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BY
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In 1900 Lehmer [3] and in 1972 Nymann [4] considered the number
T, (n) of k-tuples of positive integers [x,, ..., #;] with 1 < #; < » and the
greatest common divisor (,, ..., #;) = 1. They proved that

O(nlogn) if k =2,
0(n*%) if k>2.

In 1976 Benkoski [1] investigated the following generalization of
these results. If r is a positive integer, then the r-th power greatest common
divisor (a, b), of @ and b is the largest r-th power that divides both a and b.
He proved that the number T (») of k-tuples of positive integers [z, ..., ;]
with 1<2;<n and (@4,...,%), =1 satisfies for rk> 2, k¥ # 1, the
following relation:

(1) Ti(n) = ¢ (k)n* +

(2) Ty (n) = ¢ (rk)n* + O (n*"Y).
This together with the previous results yields
(3) lim T7 (n) 0" = {7 (rk)
n—»00

provided % %= 1, rk > 2.

In the same paper [1] Benkoski considered two related questions.
Namely, given a set 8 of primes, let (8> denote the set containing 1 and
the all positive integers every prime factor of which lies in §. Similarly
as before, let T7(8,n) denote the number of k-tuples [z, ..., ;] with
1<z <n and (w,..., ), € {§). He proved that if 8§ or the comple-
ment of 8 (within the set of primes) is finite, then

(4) lim T5(8, n)/n* = [ [ (1 —p~"*).
>0 pesS
In the meantime Nymann [6] has considered a similar complex
of questions. He introduced the notion of a divisible set as a set of positive
integers which contains the product of two integers only if it contains
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both factors. It is easy to see that V is divisible if and only if ¥ is gen-
erated by the set of primes in V, i.e. if it is of the form (8) for some set
8 of primes. He proved that if V is divisible and

V@)= )1 =A4z+0(1),
teV

i<z
then the number V,(n) of k-tuples of positive integers [z, ..., #,] with
1<z,<n, v;,€V and (2,,...,7) =1 satisfies

(5) Vi(n) = (Any[J(1 —p7%) +{0(nlogn) if k =2,

11 oO(m*)  if k>3

(p always denotes a prime). Further, Nymann proved that if V is gen-
erated by all but a finite number of primes, then

(6) lim V,,(n)[(V(n))* = [[1—p7*
n—+00 pevV

On the other hand, if we remove all but a finite number of primes,
then the corresponding limit on the left-hand side of (6) vanishes. In
view of this surprising phenomenon, Nymann asks what happens if V
is generated by infinitely many primes but also infinitely many primes
are excluded. In what follows we give a partial answer to this question.

Nymann and Leahey considered also the question what happens when
the integers are chosen according to the binomial distribution. Since we
shall not be interested in this direction, we refer the reader to [6] for more
details.

Finally, Knopfmacher extended in [2] the original Nymann’s result
to arithmetical semigroups satisfying the so-called Axiom A. This is the
direction which we shall follow. We introduce the notion of arithmetical
subsemigroup which enables us to reprove the above-mentioned results
via a unified argument and, in a more general setting, to obtain several
improvements even for the case of positive integers.

1. Arithmetical semigroups and subsemigroups. Our terminology
and notation will be as in Wegmann [7] with the only change that we
shall use the more convenient designation “arithmetical semigroup”
from [2] instead of Wegmann’s “F-Halbgruppe”.

Let G be a free Abelian multiplicative semigroup with identity ele-
ment 1 and a countable set P(G) of generators — called the primes. Such
a semigroup G will be called an arithmetical semigroup if, in addition, there
exists a real-valued norm mapping |-| on G such that '

(i) lab| = |a||b| for all @, b € G;

(ii) the total number G(z) of elements a € G of norm |a| < is finite
for each real x> 0.
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The most known prototype of an arithmetical semigroup is the multi-
plicative semigroup of all positive integers. Besides other expected exam-
ples of the multiplicative semigroups of all non-zero ideals in algebraic
number fields, the category of all finite Abelian groups with the usual
direct product operation and the norm function |A| = card(4) is one
of the known non-standard examples.

Plainly, all theorems of the ordinary number theory depending only
on the unique factorization property of positive integers remain valid
(after a suitable rewriting if necessary) also for arithmetical semigroups.
This concerns, in particular, Mobius inversion formulae or some basic
properties of the zeta-function

to(3) = D™ = [ @ —1p17*)
ne@ peP(Q)
which shall be used in the sequel. We refer the reader to [7] or [2] for more
details.

We are especially interested in subsets of @ which themselves can
be considered as arithmetical semigroups with the induced norm. Such
subsets will be called arithmetical subsemigroups of G. A subset H is an
arithmetical subsemigroup of @ if and only if H is a free subsemigroup
of G. This gives the following simple characterization:

PROPOSITION. H 18 an arithmetical subsemigroup of anm arithmetical
semigroup G if and only if H 13 generated by a set P(H) = {m;} of elements
of @ subject to the following condition:

My My, ooo My = My My, ... My implies that mg, (L<k<3s) 48 equal
to some m;, (1 <t1<), and conversely.

Thus in order that a set {m;} of elements of @ be the set of generators
of an arithmetical subsemigroup of @ it is sufficient that the m,s be
coprime in pairs (within @). (This condition is not necessary even in the
case of positive integers as the set {m, =9, my =10, m; = 15} shows.)
The latter condition is certainly satisfied if {m;} = P (&) and, consequently,
Nymann’s divisible sets from [5] are very special instances of arithmetical
subsemigroups of the set of positive integers. Therefore, all the results
from §1 of [5] are immediate consequences of general results on arithmetical
semigroups from [7].

Another type of arithmetical subsemigroups can be constructed as
follows. Given an arithmetical subsemigroup H of & and a positive integer £,
the set {n*; n € H} is again an arithmetical subsemigroup of @. Thus the
set {n*; m €@} is an arithmetical subsemigroup of @ for every positive k.

2. The general case. Let G be an arithmetical semigroup and H an
arithmetical subsemigroup of G. For z;eG (1<i<k) we define the
H-greatest common divisor of the 2s by (2, ..., #;)g = h if h is an element
from H with the largest possible norm that divides each z; (1 <% < k).
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So, for instance, the G-greatest common divisor is nothing else as the
greatest common divisor in the usual sense. If H = {n"; n € G}, then the
H-greatest common divisor extends the r-th power greatest common divisor
introduced by Benkoski. Moreover, if ¥ =1 and r > 1, then (#)y =1
if and only if « is r-free.

Using the usual technique it can be shown that (z,, ..., 2;)g always
exists and is uniquely determined.

If k is a positive integer, then T (H, #) will denote the number of
k-tuples [z,,...,#,] of elements of @G such that |7;| <2 (1<¢<k)and
(@19 200y ) = 1.

Before stating the theorem we recall some concepts and notation
from [7]. An arithmetical semigroup @ is called &-regular if its counting
function G(wx) satisfies the condition

G(2) = 2’ L(a),
where L(xz) is defined for all z > 0 and
L(ax)
m
a0 L()
It can be proved (see [7]) that if G is an arithmetical semigroup such
that G (x) is é-regular, then the series

{a(8) = Zlnl—'
b

is convergent for every s > 4 and divergent for every s < 4.
Finally, we define (after Wegmann [7]) the following functions:

LGz |t)
G(x) -

=1 for every a > 0.

r(z,t) = 1, >0,t>0,
R(z,e) = sup{a; Ir(z,y)I<e, y<a}, 2>1,a>0,e>0.

Then
limr(z,a) =0 for every a > 1,

r—>00

lr(z,y)| < & for every y < R(wz,¢),
limR(x,e) = oo for every &> 0.
THEOREM 1. Let G be a b-regular arithmetical semigroup such that the

Junctions r(x,t) are uniformly bounded for all © and t. Further, let k be
a positive integer and H an arithmetical subsemigroup of G such that the series

(7) D ™™ = £ (ko)

heH
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converges. Then
T(H,z) = [{g" (k) +0(1)][G(2)]*.

Of course, if ¥ > 2, then (7) as a subseries of an absolutely convergent

series Y |n|~* is always convergent, and therefore the condition imposed
ne@

on H is actual only in the case k¥ = 1. If ¥ = 1, then (7) is convergent if

and only if the series Y |m|~* converges ([7], Satz 1.3).
meP(H)
Proof of Theorem 1. Since (a,, ..., )y i8 determined for every

k-tuple [a,, ..., a;] of elements of &, we have

[G(w)]"=2 Z 1=2 2 1" T"(H Ibl)

lb|<3 (a oo BRI =0 i<z (cl- bc) =] |b|<2
bl  Idgi<z. ageq e |gl<allo. beG

The Mobius inversion formula yields

z k
®) T, o) = MZ<' sz (5) [G (W)] ,
beH

where ug denotes the Mdbius function associated with H.
To estimate the right-hand side of (8) we shall modify Wegmann’s
idea from the proof of Satz 2.5 in {7] as follows.

Since
¢ lfl) bI=*6 () (1+ (o, 1b]),
we have
T,(H, 2) #alb) 3 gz ()
9 bt 1l Rt A (@, |b]).
O Teer —a e T ( ),,,m o " @ 1)
beH

Inasmuch as (7) is convergent, to complete the proof it is sufficient
to show that the last sum of (9) is arbitrarily small for sufficiently large a.
But for every ¢ > 0 we have

b 'y 1]
| |<m1$v 9) R(x 3’3}”“

1] fﬁg"' D) R(z, ;)E <Hlbl<z

<elgk)+0 D' P
10> R(x, &)
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(C is the constant specified by the hypotheses of the theorem); this completes
the proof.

From the point of view of number theory the most interesting &-
regular arithmetical semigroups are those satisfying Knopfmacher’s
Axiom A [2] which reads:

AXIOM A. There exist positive constants A and 3 and a constant 7 with
0 < < 0 such that

G(x) = A2’ +0(2") a8 x— oo.

The next theorem generalizes Knopfmacher’s Theorem 4.5.12 of [2]
in the spirit of our Theorem 1. Since both our and Knopfmacher’s proofs
are based on the same ideas, the reader can derive the subsequent esti-
mates under the assumption of Axiom A also from our proof.

THEOREM 2. Let G be an arithmetical semigroup satisfying Axtom A
and let H be an arithmetical subsemigroup of G. If k > 2, then

T,(H, z) = A¥¢=1(kd)a™ +
{O(w"‘“)"f") ifk>2, or k=2 and n >0,
O(floge) if k =2, n = 0.

4. The case H = G. It seems that, assuming only the d4-regularity
of G(z), nothing interesting can be expected about the error estimate
for T, (G, ). Adding new hypotheses to those of Theorem 1 we obtain

THEOREM 3. Let G be a d-regular arithmetical semigroup such that
[r(x, t)] < f(x) for every t < x with f(x) = o(1). Then

T, (@, 2) = [Lg"(kd) + O(f (w) + &~ °*~1+*)] [@ ()}

Jor every integer k = 2 and every & > 0.

After consulting the proof of Satz 2.5 of [7], the proof of Theorem 3
can safely be left to the reader.

Let @ be é-regular and let P = P(G). Then Gp will denote the arith-
metical subsemigroup of G generated by P(G@)—P. Wegmann proved
([7], Batze 2.1 and 2.2) that

(10) Gp(2) = 31 =[[]a=1pI")+0(1)] 6(2)
: ':5; peP

provided ome of the following conditions holds:

(i) P is finite and @ is an arbitrary d-regular arithmetical semigroup,
(ii) P is infinite with convergent Z Ip|~% and @ is d-regular such that

there exists a constant C with [r(a: Ip])l <Cforallxzand peP, |p|<
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This implies that in either case Gp(z) is é-regular together with G(x).
Thus for H = Gp = G we get from Theorem 1 the following ‘

COROLLARY 1. Let G be given as in Theorem 1. If P = P(@) is such that
2 IpI7°< oo, then

peP )
T(@py2) = [[[1—1p17™) +0(1)] [Gp(a)]*
peEP

for every integer k = 2.

This is the result we announced above. This shows that (6) (i.e. Corol-
lary 2 of [6]) remains true also if V is generated by a set of primes such
that the series of reciprocal values of excluded primes converges. So,
for instance, if P(n) denotes the probability that two integers not ex-
ceeding #» and having no prime divisor amongst the prime twins, chosen
at random, are relatively coprime, then

imP(n) = [[*(1-p™,
00 P

the asterisk * indicating that the product is over the primes which are
not prime twins. '
Tf the series Y |p|~? is divergent, then @5 has zero asymptotic density

within @. It seem"::ha.t in this case the corresponding limit in (6) vanishes.
In the next lines we show how an asymptotic formula with error estimate
can be obtained for the original Nymann’s result (6).

Suppose now that @ satisfies Axiom A. Then in the case H = @ our
Theorem 2 reduces to Theorem 4.5.12 of [2], which immediately implies (1).
As mentioned above, Nymann’s divisible sets arc special instances of
arithmetical subsemigroups of the semigroup of positive integers, and
therefore also (6) is obtainable in turn from Theorem 2 (or Theorem 4.5.12).

Return again to (6). Nymann’s proof of (6) is based on the observa-
tion that the set S of positive integers which are coprime to a given finite
set of primes is divisible and S(z) = Az+ O(1) for suitable 4. But if @
is an arithmetical semigroup satisfying Axiom A (what the set of positive
integers is) and a is an element of @, then ([2], Theorem 4.1.3) the set of
all elements of G that are coprime to & forms an arithmetical subsemigroup
of @ again satisfying Axiom A (a related result for d-regular semigroups
is given in (10)). Thus (6) can be derived from Theorem 2 even with an
error estimate.

4. The case H = {n";n€@}. If r =1, then H =@, and therefore
we can suppose that r is a positive integer greater than or equal to 2. But
if r>2 and H = {n"; n € G}, then the hypothesis regarding the conver-
gence of (7) is again superfluous, and so the case ¥ = 1 can be again incor-
Porated in our considerations. Theorem 4 below is an analogue of Theorem 3.

7 — Colloquium Mathematicum XLV.1
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In this section we return to the Benkoski shorter notation. Namely,
T:(x) will denote the number T, (H, x) provided H = {n"; n € G}.

THEOREM 4. Let G be given as in Theorem 3. If k> 1 and r > 2 are
tntegers, then for every ¢ > 0 we have

(@) =[5 (% 8) + O(f () + &~ = V)] [G (2) .

The proof runs again along modified Wegmann’s ideas of the proof
of Satz 2.6 in [7] if we take into account that (g(kd) = {y(rkd) and
s (b") = pg(d) hold in this case.

Further, we have

THEOREM 5. Let G be an arithmetical semigroup satisfying Axiom A.
If k> 1 and r = 2 are two integers, then

(O(x*~°*7)  if k> 2,0rk = 2 and 7> 0,

O(z’loge) if k=2, 9=0,
Ti(2) = 45! (rk 8)a™ +{ O(a™) if k=1, n<éfr,

O(2"flogz) if k =1, = dJr,

L0 (2") if k=1, n> 8r.

We leave the tedious proof to the reader, noticing only that (8) re-
duces to
Ti(@) = D) pa(®)[A(@/bI"Y +O((=/b")")]*.

i<z /7
The discussion of relations to Benkoski’s results is dispensable.

5. Related cases. Theorems 1 and 4 reduce to Wegmann’s Satz 2.5
about the density of r-free elements in G provided ¥ = 1. However, the
result on the density of r-free elements of @ is a particular case of the
next corollary to Theorem 1. Beforehand a definition:

Given an arithmetical subsemigroup H of @, an element #» of G will
be called H-free if the identity element 1 is the only divisor of # belong-
ing to H.

COROLLARY 2. Under the hypotheses of Theorem 1 the density of H-free
elements of a 8-regular arithmetical semigroup is equal to L' (8).

The next corollary contains also some of already discussed results.

COROLLARY 3. Let G be given as in Theorem 1. Let 8 = {p,},.4 be a set
of distinct primes of G and {a,},.4 a set of positive integers. If H is generated
by P(H) = {P5*}scn, then for every integer k > 2 we have

Ti(H, o) = [ [ @ —1p17**) + o (1)] [G(=) .
ded
Result (4) of Benkoski gives rise to the following question:

Given an arithmetical semigroup G and two its arithmetical sub-
semigroups H and 8, what can be said about the number T,(H, S, x) of
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k-tuples [z,, ..., 2] of elements of @ with || <« and (@,, ..., %,)g € 8¢
(P 1231)
The following corollary gives a partial answer to this problem.

COROLLARY 4. Let G and H be given as tn Theorem 1. Assume that
there exist two arithmetical subsemigroups 8, and S, of H such that every
element h of H can be uniquely represented in the form h = 8,8, with 8, € 8;
(¢ =1, 2). Then

T\(H, 8,, ) = [{5, (k8)+0(1)][G (=)}

The corollary follows immediately from the fact that T, (H, 8,, x)
= T, (8s, #) in this case.

In particular, putting P <« P(G), H = {n";n €@}, 8, = {n"; n € Gpg)_p}
and 8, = {»"; »n € Gp} in Corollary 4 we see that Benkoski’s “finiteness”
assumptions in (4) are redundant.
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