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1. Introduction. Topologies for subgroups of the real numbers that are
weaker or stronger than the usual topology have been studied in [1], [3]}-
[8]. [10]. not only for their intrinsic interest but also as sources of useful
examples and counterexamples. In the present paper we usc a set |p;: i€ Z|
of positive real numbers to define norms || || for the group S of dyadic
rationals that are stronger than the usual norm and then examine the
completions of S with respect to these norms. Our results provide a negative
answer to a question posed by S. Mazur in The Scottish Book ([2], Problem
160, pp. 236-238): Must a complete metric group which is generated by
every neighbourhood of the identity be connected? Indeed, if C is the
completion of (S, |} ||) and f: C— R is the natural map, then C is always
generated by every neighbourhood of the identity and f is always injective.

a0
The homomorphism f is surjective, however, if and only if Z p; < oo, and
1

thus C is “often” totally disconnected. To determine whether a given real
number x is in f(C), we need only ascertain whether a certain subseries of

a
Y pi, derived from the binary expansion of x, converges.
1
Our principal theorems are precisely stated in Section 2 and proved in

that section and in Section 4, while Section 3 contains preliminary results
that establish important relationships among binary expansions, the value of
the norm || ||, and the image f(C). In the final section we place our results in
the context of the differing definitions of “connected” that were proposed by
Cantor and HausdorfT. '

2. Main results. We begin by establishing the notation that will be used
throughout this paper. R, Q, Z, N, and | | denote, respectively, the real
numbers, the rational numbers, the integers, the natural numbers, and the
usual absolute value, and S is the set if dyadic integers (that is, the set of all
real numbers of ‘the form b/2" where b, ne Z). Since we will often be
concerned with finite sums and infinite series, it is convenient to stipulate
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that the symbol ) x; always denotes a finite sum; if the initial and final

. n
values of the index i are of interest, we will write this sum as ) x;. An

infinite series will be written as ) x;. The symbol B marks the end of a

proof.

We may now define the norms which form the subject of this paper. Let
{p;: ie Z) be a set of positive real numbers such that p; < p;_, < 2p; for all
ieZ and p; » 0 as i > + 00. Our strategy is to construct the largest norm || ||
on S such that |27 < p; for all ie Z, and thus we define || || by

(1) lIsll = inf{} |alp;: s =) a;27%, a,eZ} for seS.

Our principal results are contained in the following two theorems.

THeoREM 2.1. Let ip;: ieZ) and ||-|| be as above. Then

@ |l I is @a norm on S and is stronger than | |; '

(i) if (C, || ) is the completion of (S, || ||), then C is generated by every
neighbourhood of the identity; )

(iii) if f: C— R is the uniformly continuous extension of the identity
homomorphism (S, || ||) = (S, | |), then f is injective.

THEOREM 2.2. Let (C, || ||) be as in Theorem 2.1. Then the following
statements are equivalent:

(i) Y p; does not converge in (R, | |).
1

i) @nf(C)=S.

(i) f(C) # R.

(iv) C is totally disconnected.

(v) || I is ‘strictly stronger than | | on S.

Before proceeding further, we observe that sets {p;: i€ Z} satisfying the
hypotheses of Theorem 2.1 are easy to find. We can, for example, let p; = 1 if
i<Oand p;=1/iifi>=1, or let p;=1/9 if i <2 and p} = 1/i*> if i > 3. Then
{p;} satisfies Theorem 2.2 (i), but {p;} does not.

Although the proofs of 2.1 (iii) and 2.2 must await the discussion of
binary expansions in Section 3, we can proceed without delay to the proofs
of parts (i) and (ii) of 2.1. We begin with a useful observation which follows
easily from the hypothesis that p,_, < 2p; for all ie Z.

LEmMMA 2.3. For every seS,
lisll = inf {}"|a;| pi: s =) a;27", a0, £1}}.

We now prove 2.1(i). The triangle inequality and the fact that ||s]|
= || —s|| for every se S follow from (1). To prove the remainder of (i), it will
suffice to show that |s| < 1/2/ whenever ||s|| < p;. If Is]| < p;, then Lemma 2.3
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implies that s can be written in the form ) ¢;27%, where a4;e {0, +1} and

n
Y la|p; < p;. Since p; < p;—, for all ieZ, we conclude that a; =0 if i <},

whence |s| < ) [af27 < 1/2.
j+1
To prove Theorem 2.1(ii), let ¢>0 be given and let B = {ceC:
llcll <e€}. Since ||27%| < p; and p; > 0 as i —» + o0, B contains all 27/ with i
sufficiently large and thus generates a subgroup that contains S. Since
(S, 1] ID is dense in C, this subgroup also contains C.

3. Binary expansions. In this section we show how to use the binary
expansion for an element x > 0 of R to determine whether xef (C). If we
agree always to use the terminating expansion for an element of S, then every
positive real number x can be written uniquely in the form

n "j .

2 x=23 X 27
j=1i=ij

where i; and k; are integers such that i; < k; <i;,, —2 for all j; n is finite if
xe S, and otherwise n = oc. This representation, which divides the binary
expansion of x into blocks of ones separated by at least one zero, will be
called the standard representation of x; the standard representation of O is
simply. the expansion in which all coefficients are zero.

If x, ye[0, + o0) and me Z, we will say that x and y are m-equivalent i,
for every i < m, the coefficient of 27 in the standard representation of x
equals the corresponding coefficient in the standard representation of y. In
both this section and the next, we will have occasion to use the following fact
about m-equivalence, the elementary proof of which we omit.

LEmMA 3.1. Let x > 0 be in R\S, and let |x,: me N} be a sequence in R
such that |x,,—x| = 0. Then there is a subsequence {x,;: je N} of {x,} such
that X, and x are j-equivalent for all je N. The same conclusion holds if |x,,}
is a sequence of non-negative real numbers that converges to x =0 in (R, | |).

We now introduce the function D which will serve as the principal tool
in our investigation of (C, || ||). For each xe[0, + o), D provides a weighted
count of the frequency of changes from O to 1 in the standard representation
of x. We define D as follows: Let D(0) =0. If x is a positive real number
with standard representation (2), then

’ n
Y p, if  xeS;
=1 7

D(x)=4 ) p;, if xeR\S and the series converges;

L oo if xeR\S and Y pi; diverges.
: <

Jj=
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The chief goal of this section is to prove the following proposition.

ProposiTION 3.2. Let x be a non-negative real number. Then xef (C) if
and only if D(x) < c©.

Our proof begins with an elementary lemma that compares the standard
representation of an element s of S with other representations of s.

LEMMA 3.3. Let 5> 0 be an element of S with standard representation as
p 1

in (2), and let B=) 27'. Suppose that s can also be written in the form
i

14
Y a;27%, where a;e {0, +1} and a, # 0. Then m < iy, and either

k1
(i) z a,- 2-i = B
or "
ki +1

(i) @ +1=—1and Y a2 =B+2" """

Proof. To simplify the notation we let « =i, and f=k,. That m< a
follows immediately from the inequality

P
27g<s <Y 27 <27 D

and the fact that m, ae Z. Turning to the remainder of the lemma, we first
observe that the inequalities

g+1

3) iz-‘<s< y 27

P
and |} 4;27Y <27# together imply that
g+1
B-1

g
Y 27 <Y g,27F <27 @D 4270+,

B
Therefore Z a;27%, as an element of the subgroup of S that is generated by

27% must equal either z 27" or 2@~V That is, either (i) occurs or Z a;2""

=2"@"D and to ﬁmsh the proof it suffices to show that in the latter case
Apsy = —l We accomplish this by noting that the inequality

p+1
$22°@ LY g2 @ D 2@y g
a

p+2

not only holds when a;z,, > 0 but also contradicts (3). W
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We now prove an important relationship between ||s|| and D(s).
LEMMA 3.4. For every non-negative se S, D(s) < ||s|| < 4D(s).

Proof. We consider first the inequality D(s) < |Isl|, which we will prove
by induction on the number n of blocks of ones in the standard

P
representation of s. By Lemma 2.3, it suffices to show that D(s) < ) | p; for

p
every representation of the form s =) 4;27%, where a;€ {0, +1} and a,, # 0.

When n = 1, the desired inequality follows easily from the fact that m < i,
(by Lemma 3.3). Suppose then that D(s) <||s|| whenever 1 < n< n,.

Adopting the notation of the proof of Lemma 3.3, we know from that lemma
B+1

that either (i) Za 27" =B or (ii) Z ;27" =B+27%*D and a5,, = —1.

Subtracting B from the standard representatlon of s and applying the
inductive hypothesis to the remainder r, we find, respectively, that either

p

p
r=3Y 2" and D<) lalp

p+1 p+1

or

P » )
r=2"0*V4 % 427" and D)< pgsr+ Y, lalpi= Y lalp;.

B+2 B+2 B+1

Since m < «, it follows in either case that

| 4 14
D(s) = p,+D(r) < pm+ X lalpi <Y lail pi.
p+1 m
Thus D(s) <|s|l, and the first inequality is proved.
To show that [|s|| < 4D(s), we first rewrite the standard representation
(2) for s as
s=Y 7977 -27h),

1

™Ma

Jj

Since p; < p;—, < 2p; for all i, it follows that

n n n .
"s” < Z (plj—l+pk1) < Z 2pl'j-l < Z 4le = 4D(s)'
j=1 ji=1 ji=1

This concludes the proof of the lemma. B

We proceed now to the proof of Proposition 3.2. The proposition is
trivial if xe S, and thus we confine our attention to the case where xe R\S,
with standard representation given by (2). Suppose first that D(x) < oo, and
let s,, be the sum of the first m blocks of ones in the standard representation
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of x; that is, let

m kj
-y ¥ 2

Jj=1 i=ij

When m > k> 1, we know from Lemma 3.4 that

lism—sill = || Z Z 27 <4 Z Pij»
Jj=k+1 i= | j=k+1
and thus |s,; is a Cauchy sequence in (S, || ||). Therefore {s,} | ||-<on-
verges to an element ¢ of C, and the continuity of f assures that f(c) = x.
To prove the other half of the proposition, let cef ~!(x) and choose a
sequence 1s,,: me N} = S such that ||s,—c||— 0. Then |s,—x] — 0 as well,
and Lemma 3.1 allows us to replace {s,} with a subsequence and thus

assume that |s,) is i,-equivalent to x for all me N. Combining this

observation with Lemma 34, we find that Z Pi; < D(sy) < llsnll for all

me N, whence we obtain D(x) < ||c]| < co by lettmg m— +oc. B

4. Proofs of theorems. In this section we prove Theorem 2.1(iii) and
Theorem 2.2. To prove the former, it suffices to show that every || ||-Cauchy
sequence {s,: me N} = S such that |s,| - 0 has a subsequence Smiy: JEN)
such that ||s,;ll = 0. Clearly it is enough to consider the case where s, > 0
for all me N, and thus we can use Lemma 3.1 to obtain a subsequence {Smiiy}»
which we will re-name {t;: je N}, such that s,,; is j-equivalent to 0 for all
jeN. Now let ¢ > 0 be given, and choose ne N such that p; <&/9 and ||t;
—t,ll <&/9 for all j > n. If k is the largest value of i such that 2~ has a non-
zero coefficient in the standard representation for t,, then the k-equivalence
of t, and 0 implies that t,—¢, is (k—1)-equivalent to t, and that D(t,) < D(t,
— )+ px. Using both inequalities in Lemma 3.4 and the fact that k > n, we
obtain

lIzall < 4D(t,) < 4[D(t,—t)+p] < 4[llt,—till + ] < 82/9,
and thus
llell < Nle;—tall +]it)l <& for all j>n

Therefore [|tj]| — 0, and f is injective. B

To prove Theorem 2.2, we will show that (i) = (i) = (iii)) = (iv) = (V)
= (1). The implications (ii) = (iii) and (iv) = (v) are trivial, and 2.1 (iii)) makes
it clear that (iit) .= (iv). It remains to prove that (i) = (ii) and (v) = (i).

(i) = (ii): Since S < f(C), our task is to show that no element of Q\S
can be in f(C), and for this it suffices (by 3.2) to show that D(q) = oo for
every postive ge Q\S. Now the standard representation for any such g will
“end” with a repeating block of digits a,a,,, ... a. containing at least one 0
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and at least one 1, and thus
b-1 x k-1

m Jj=0i=0

where g;€{0, 1} if m<i<b, {g;: b<i<c)=1{0,1},and k =c—b+1. Now
every block of digits, except possibly the one corresponding to j=0,

contains a 1 that is preceded by a 0, and therefore D(q) > Y p.. ;- Since
j=1
k—1
Pesju = (1/k) Y. P+ ju+; for all je N, it follows from the comparison test that
i=0

D(q) = o if ) p; does not converge in (R, | |).
1
(v) = (i): Using an argument that resembles the proof of 2.1 (iii), we will

e o}
prove that || || is not strictly stronger than | | on S if Z p; converges in

1
(R, ] |). To do this, it suffices to show that every sequence {s;: ie N} in §
such that [s;)] » 0 has a subsequence {s;;: je N} such that ||s;;|l — 0. Since
we may assume that s; > 0 for all ie N, Lemma 3.1 provides a subsequence

an
{8i;): je N} such that s, is j-equivalent to 0 and thus ||s;;)ll < Z p; for all
jt1

je N. That lIsiyll = O then follows from the hypothesis that ) p; < o, and
1

the proof of Theorem 2.2 is complete. B
Before closing this section, we wish to note that both our definition of

| || and the strategy of using subseries of ) p; to find f(C) were suggested by
1

an example in Section 3 of [1]. Indeed, that example would itself provide a
negative answer to Mazur’s question, were it not for the fact that the “norm”
given there fails to satisfy the triangle inequality. Although an unpublished
result of Erd6s would apparently ([1], p. 207) allow the example in Section 2
of [1] to solve Problem 160, our construction has the advantage of being
both simpler and self-contained.

5. Problem 160 and the definition of “connected”’. In [11] R. L. Wilder
traced the development of the currently accepted definition of “connected”,
which is often (though perhaps not quite accurately) attributed to
F. Hausdorff. As is well known, G. Cantor orginally proposed that a metric
space (X, d) be called “connected” if, for every x. x'e X and for every ¢ > 0,
there exists a finite set {x,,..., x,] < X such that x =x;, x,=x’, and
d(x;, x;+1) <eif 1 <i<n ([11], p. 722). Although this criterion is equivalent
to the usual one if (X, d) is compact, Example 31 in [9] (pp. 59-60) can be
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used to show that the two definitions are not equivalent for complete metric
spaces.

When (X, d) is a topological group with left-invariant metric d, it is easy
to prove that (X, d) is “Cantor-connected” if and only if it is generated by
every neighbourhood of the identity. Thus for groups with left-invariant
metrics, Mazur’s Problem 160 asks whether a complete group that is Cantor-
connected must also be Hausdorff-connected. As our Theorems 2.1 and 2.2
demonstrate, the answer is “no”.

Remark. A. Gleason has pointed out to the author examples of
Cantor-connected, Hausdorff-disconnected, complete metric spaces that are
much simpler than the one we have drawn from [9]. Among these is the
subset of R? consisting of all (x, y) such that x # 0 and y > 1/x2.
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