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MULTIPLE RADICAL THEORIES
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B. J. GARDNER (HOBART, TASMANIA)

If a non-trivial radical class £ in the universal class of all associative
rings is also a semi-simple class, the semi-simple class & = {A| #(4) = 0}
is not radical, while the radical class ¢ for which # = {4|%¢(4) = 0}
is not semi-simple. In the present paper we answer the following question,
inspired by a paper of Kurata [7]:

If 2 is a semi-simple radical class in some other universal class of
rings, can & be radical and can ¢ be semi-simple?

Before we proceed, we need to introduce some notation and termi-
nology. If # is a radical class and & is the corresponding semi-simple
class, we call (2, &%) a radical theory (by analogy with the torsion theories
for modules introduced by Dickson [2]). Extending this, and following the
example of Kurata, who introduced n-fold torsion theories, we call an
n-tuple (£, ..., #,) of classes of rings an n-fold radical theory it (%;, #;.,)
is a radical theory for j =1, ..., n—1. If there is an integer 4 such that
R;.1 = R, the least such is called the length of (%,, ..., #,); otherwise,
(21, ..., &,) is said to have length n. Thus a semi-simple radical class is
analogous to a TTF class as defined by Jans [6], while a 3-fold radical
theory of length 2 is analogous (at this stage only formally, but — as
we shall see later — in some important respects also) to a centrally split-
ting torsion theory in the sense of Bernhardt [1].

Kurata showed in [7] that an n-fold torsion theory (» > 2) must be
either 3-fold of length 2, 3-fold of length 3 and not extendable to a 4-fold
theory or 4-fold of length 4. There are several ways in which one might
attempt to find analogues of this result for rings, depending on the kinds
of universal classes in which one wanted to define radicals. We proceed as
follows. All universal classes considered are varieties of (not necessarily
associative) rings (no operators). A variety serving in this way is called
universal. We show, in this setting, that the possibilities for an n-fold
radical theory are exactly those for an n-fold torsion theory (Section 1).
(It is to be expected that if other kinds of universal classes are used, the
results may be different: Widiger and Wiegandt [13] have recently looked
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at radical theory in the universal class of hereditarily artinian rings and
have shown that there are homomorphically closed semi-simple classes
which are not radical; this could not happen in a universal variety.)

In Section 2, we choose various universal varieties to demonstrate
there the existence of n-fold radical theories of all “allowable” types.
The parallels between 3-fold radical theories of length 2 and centrally
splitting torsion theories are seen to be quite extensive. Such radical
theories are also connected with the following question considered by
Gritzer et al. [6]: If # and ¥ are varieties of (universal) algebras, when
is 4vy =aux¥? Our characterization of 3-fold “radical theories of
length 2 also leads to a refinement of the structure theorem for autodis-
tributive algebras obtained by Fiedorowicz [3].

There is a comparatively plentiful supply of 3-fold radical theories
of length 3. In Section 3 we find some sufficient conditions on a universal
variety for the absence of non-trivial 4-fold radical theories (and hence
of 3-fold theories of length 2).

1. Possibilities. The results in this section, by and large, closely
resemble some of Kurata’s results in [7] for modules.

LEMMA 1.1. Let (R, Rz, R,) be a 3-fold radical theory with R, heredi-
tary. Then R, < R,.

Proof. For any ring A in #,, we have %#,(4) e #,Nn %, = {0}, so
AeR,.

LeMMA 1.2, Let (Ryy Rzy R3, R,) be a 4-fold radical theory with X,
homomorphically closed. Then R, = R,.

Proof. Since #, is also homomorphically closed, for every ring 4 we
have

A (gz(A)+g3(4)) € Ryy Ha)

so that 4 = #,(4)+R,(4). In particular, if 4 € #,, i.e. #,(4) =0,
then A = #,(A),ie. ARy, 50 R, < R,. But R, is hereditary, being
a variety ([4], Theorem 1.5), so, by Lemma 1.1, £, < %,.

COROLLARY 1.1. There are mo 4-fold radical theories of length 3.

Proof. If (#,, #;, %3, #,) is a 4-fold radical theory, then £, is homo-
morphically closed, so 2, = £, which is impossible.

COROLLARY 1.2. There are mo 5-fold radical theories of length greater
than 2.

Proof. Let (%, Z,, Ry, #:, ;) be a 5-fold radical theory with
Ry # R,. Then (#,, Ry, R;, R,) is a 4-fold theory with £, homomorphically
closed, so #, = #,. But then %, = %,.

COROLLARY 1.3. For each n > 4, all n-fold radical theories have length 2.

The preceding results combine to yield
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THEOREM 1.1. A multiple radical theory must be of one of the following
kinds:
(i) 3-fold of length 2,
(ii) 3-fold of length 3, not extendable to 4-fold,
(iii) 4-fold of length 4.

2. Examples and an application. In this section we show that all
possibilities for multiple radical theories listed in Theorem 1.1 can be
realized. The 3-fold radical theories of length 2 turn out to have connections
with a question in universal algebra considered in [6] and we apply them
to get a refinement of the structure theory for autodistributive algebras
presented in [3].

THEOREM 2.1. The following conditions are equivalent for subclasses
U and V" of a universal variety # :

(i) (, v, %) is a 3-fold radical theory.

(ii) % and ¥ are varieties and every ring R € W has a unique repre-
sentation R = A®B with A e ¥ and Be ¥.

(iii) % and ¥ are varieties, UNY = {0} and every ring R ¥ has
a representation R = ADB with A €% and Be V.

Proof. (i) = (ii). Both  and 7" are semi-simple radical classes, and
hence varieties ([4], Theorem 1.5). Furthermore, we have, for each R € #,

4R) = ({K<R|R/IKEe¥} and ¥ (R)=()\{K <R|R/Kec%}.
Then
R|[%(R)+7 (R)] e ¥ nu = {0},

80 B = % (R)+ 7 (R), while Z(R)Nn¥" (R)eUNn¥ ", 80 U(R)n¥ (R) =0,
and thus B = #(R)®7 (R) for each Re#". If now R = AQ@B with
A e and Be ¥, then A < %(R), while since R/A ~ B e ¥, we have
%(R) < A, 8o that A = % (R). Similarly, B = ¥"(R), and this establishes
condition (ii).

(ii) = (iii). If Re«n¥", then since RPO0 =R = 0D R, we have
R =0.

(iii) = (i). Assume that R € #" has an ideal I such that both I and
R/|I are in %. Then R = A @ B, where A e % and B € ¥". We have

I[INA ~(I+A)JA< R|/A~Be?,
while I/INA €% since I € %. Hence INnA =1, i.e. I = A. But then B,
a8 a homomorphic image of R/I, is in %, as well as 7", so B = 0, and thus
R ~ A € %. Thus % is closed under extensions. By Theorem 1.4 of [4], %
is a radical class. If T' is a ring in ¥", then %(T) e #n¥" = {0}, so #(T)
= {0}. On the other hand, any ring 8 is of the form K@ L with Ke#
and Le ¥, and then

#8) = (K)Q%(L) = K®u(L) =K.
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Thus, if #(8) =0, then 8§ (=L)e ¥". This proves that (%, ¥’) is
a radical theory. Similarly, (¥, ) is a radical theory.

COROLLARY 2.1. Let % and ¥ be as in Theorem 2.1, let F be a free W -ring
on N, generators, and let I and J be the T-ideals defining % and ¥, respec-
tively. Then F =J PL.

Gritzer et al. (see [5], Theorem 1) have given some sufficient conditions
on a pair of varieties #, ¥ for them to satisfy condition (ii) of Theorem 2.1,
and Lee Sin-Min [8] has shown that these hold when # is the class
of zero rings and ¥ is generated by a finite set of finite associative fields.
From Theorem 2 of [8] we get

THEOREM 2.2. Let #  be the variety of associative rings generated by
a finite set of finite fields and all zero rings. Then (%, v, %) is a 3-fold
radical theory, where % s the class of zero rings and ¥~ the class of idempo-
tent rings (in #").

Our second example concerns the autodistributive rings — the rings
of characteristic 2 in which multiplication is distributive over itself,
i.e. which satisfy the identities

22 =0, =(y2) = (zy)(we), (2y)2 = (x2)(y2).

These rings were investigated by Fiedorowicz [3]. (It might be more
appropriate to call a ring autodistributive if it satisfies the second and the
third of the above-given identities. It follows from Theorem 1 of [3]
that any 2-torsion-free ring satisfying these identities is nilpotent of
index 3; the algebras over the field of two elements are studied in [3].)

THEOREM 2.3. Let # be the variety of autodistributive rings, and let
A and & be the varieties in W defined by the identities x(yz) = 0 = (zy)z
and x® = x, respectively. Then (¥, &, ¥) i8 a 3-fold radical theory.

Proof. By Theorems 8, 9 and 10 of [3], 4" is a radical class with &
as its semi-simple class. It follows that & is a radical class ([4], Theo-
rem 1.5). We show that

(A) ={acAd|a* =a} forall Ae¥ .
Ifa = a*and b = b% then a = a® and b = b, s0, by Theorem 7 of [3],
(a+b)? =a*+b* =a+b and (a+d)* =a*4b* =atb,
whence
(a+b)* = (a+bd)(a+b) = (a+b)’(a+b) =(a+b) =a+d

(by Theorem 6 of [3], A is power-associative). If now a and ¢ are in A
with a® = a, then we have

(ac)® = (ac)(ac) = a’c = ac, (ca)® = (ca)(ca) = ca® = ca.
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Thus the set of idempotent elements is an ideal of A, and so must
coincide with &(4).
Hence the semi-simple class corresponding to & is

S ={Ade¥#|lacAd,a® =a =>a = 0}.

If se A e, then, by Theorem 5 of [3], (83)2 = s® =83, 50 83 =0
and A4 is a nil. Thus & < A#. Clearly, #/ < <.

COROLLARY 2.2, Every autodistributive ring i3 uniquely expressible as
a direct sum of a nilpotent ring of index 3 and a ring in which all elements
are tdempotent.

All of the above remains unchanged if we alter our point of view and
consider algebras over the field of two elements. Thus Corollary 2.2
augments the structure theory in [3].

Let # be a semi-simple radical class of associativerings, and let (¢, #)
and (2, &%) be the corresponding radical theories. Then ¥ and & contain
all zero rings, while all semi-simple radical classes consist of idempotent
rings (see, e.g., [11]). It follows that (¢, #, &) is a non-extendable 3-fold
radical theory of length 3.

THEOREM 2.4. Let # be the universal variety of associative rings. Then
in W there are 3-fold radical theories and none of them is extendable.

We complete our survey by exhibiting a 4-fold radical theory of
length 4.

THEOREM 2.5. Let #~ be the universal variety consisting of all associative
extensions of zero rings by (assoctative) boolean rings. In W', let £, Z and & be
the classes of idempotent, zero and boolean rings, respectively. Then there exists
a class & such that (F,Z, &, %) i3 a 4-fold radical theory of length 4.

Proof. & is a semi-simple radical class in the universal variety of
all associative rings, and hence in #°. Let & be the semi-simple class in #~
corresponding to & as a radical class. Now, every ring R in #" has an ideal I
such that I’ = 0 and R/I € &. The sum of all ideals of B which belong
to Z is a nil associative ring and -belongs to #7, so it is in 2. It follows that
Z is a radical class. Clearly, 2 (A) = 0 for some ring A in #  if and only
if A € &. Arguing as in Theorem 1 of [9] or in Theorem 1 of [10], we can
prove that Z is also a semi-simple class. The corresponding radical class
is then clearly #. Thus (S, &, &, &) is a 4-fold radical theory. Let H be
the field with two elements, and @ a one-dimensional vector space over H.
Let T be the ring with additive group G @ H and multiplication given by

(g1s k1) (g2y b3) = (h1ga+hagy, hihy).

Then T is in ¥/, is idempotent, but is not boolean. Hence f # &,
and the theorem is proved.



350 B. J. GARDNER

3. Impossibilities. In order to produce most of the examples in the
previous section we had to look at universal varieties quite different from
those in which radical theory is generally developed, and in the more fa-
miliar class of all associative rings we saw that 4-fold radical theories do
not exist. In this section we generalize the latter result to a wide range
of universal varieties.

THEOREM 3.1. Let # be a universal variely containing all zero rings
and such that

NF =0

for all free rings F in # . Then #  has no non-trivial 4-fold radical theories.

Proof. Suppose that (#,, #,, #,, #,) is a non-trivial 4-fold radical
theory, i.e. none of #,, #,, #;, #, is #". Then #, and £, are extension-
-closed varieties, so, by Corollary 1.9 of [4], they cannot contain any zero
rings different from 0. Thus, if 4> = 0, we have #,(4) = 0, i.e. 4 € %,,
but #,(4) =0, so A =0, contrary to the hypotheses on # .

Note that the variety of associative rings satisfies the hypotheses
of Theorem 3.1, but has 3-fold radical theories.

If (R, R,y Ry, R,) is a 4-fold radical theory, then 2, is a strongly
hereditary strict radical class (see [12] for this terminology). Hence in
universal varieties where classes of the latter kind are rare, 4-fold radical
theories are unlikely to occur. We conclude by investigating this matter
for varieties between the associative and the power-associative rings.

Let P be a non-empty set of primes. For a universal variety #°, we
denote by #p the class of rings in #° whose additive groups are direct
sums of p-groups with p € P.

THEOREM 3.2. Let #" be a universal variety of power-associative rings
which contains all associative rings. The only non-trivial strongly hereditary
strict radical classes in W are the classes W 'p.

Proof. Let {(a) denote the subring of a ring generated by a single
element a. If # is a non-trivial strongly hereditary strict radical class and
A is in #°, then A is in 2 if and only if <a) is in # for each a € A. Also,
each such {a) is associative. Let 2, denote the class of associative rings
in #. Then 2, is a non-trivial strongly hereditary strict radical class in
the universal variety of associative rings. By a result of Stewart ([12],
Proposition 4.1), there is a set P of primes such that &, is the class of all
associative rings in #'p. If r € R € #, then {r>) e 2, < #p. Hence Z < #'p.
On the other hand, if ¢t €T € #p, then {i) e £, < #, whence T € &, so
R=Wp. .

‘COROLLARY 3.1. Let #~ be as in Theorem 3.2. Then % has no non-trivial
4-fold radical theories.
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Proof. By Theorem 3.2 and the remarks preceding it, any 4-fold
radical theory must have the form (%,, #p, #,, #,) and #p must be
closed under formation of direct products. But # " contains the zero ring

on the cyeclic group of order p” for each p € P and for each n, and the product
of these has elements of infinite order.

Added in proof. After the submission of this paper, there appeared a
paper by T. Kepka (On a class of non-associative rings, Commentationes
Mathematicae Universitatis Carolinac 18 (1977), p. 531-540) in which our
Corollary 2.2 7a.n also be found.

REFERENOES

[1] R. L. Bernhardt, Splitting hereditary torsion theories over semiperfect rings,
Proceedings of the American Mathematical Society 22 (1969), p. 681-687.
[2] 8. E. Dickson, A torsion theory for abelian categories, Transactions of the
American Mathematical Society 121 (1966), p. 223-235.
[8] Z. Fiedorowicz, The structure of autodistributive algebras, Journal of Algebra
31 (1974), p. 427-436.
[4] B.J. Gardner, Semi-simple radical classes of algebras and attainability of iden-
tittes, Pacific Journal of Mathematics 61 (1975), p. 401-416.
[6] G. Gréitzer, H. Lakser and J. Plonka, Joins and direct products of equational
classes, Canadian Mathematical Bulletin 12 (1969), p. 741-744.
[6] J.P. Jans, Some aspects of torsion, Pacific Journal of Mathematics 15 (1965),
p. 1249-1259.
[7] Y. Kurata, On an n-fold torsion theory in the category RM Journal of Algebra
22 (1972), p. 559-572.
[8] Lee Sin-Min, Equational classes of rings generated by zero rings and Galois
fields, Acta Scientiarum Mathematicarum (Szeged) 37 (1975), p. 83-86.
[9] L. C. A. van Leeuwen, C. Roos and R. Wiegandt, A characterization of
semisimple classes, Journal of the Australian Mathematical Society, Series A,
27 (1977), p. 172-182.
[10] A. D. Sands, Strong upper radicals, Quarterly Journal of Mathematics, Oxford
Second Series, 27 (1976), p. 21-24.
[11] P. N. Stewart, Semi-simple radwal classes, Pacific Journal of Mathematics
32 (1970), p. 249-254.
[12] — Strict radicual classes of associative rings, Proceedings of the American Mathe-
matical Society 39 (1973), p. 273-278.
[13] A. Widiger and R. Wiegandt, Theory of radicals for hereditarily arlinian
rings, Acta Scientiarum Mathematicarum (Szeged) 39 (1977), p. 303-312.

UNIVERSITY OF TASMANIA
HOBART, AUSTRALIA

Regu par la Rédaction le 10. 8. 1976



