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TOPOLOGICAL ZERO-ONE LAWS

BY

K.P.3. BHASKARA RAO (CANBERRA) axp ROMAN POL (WARSZAWA)

In [1] a topological zero-one law was obtained for sets with the prop-
erty of Baire which are invariant under a group of homeomorphisms.
In the present paper we generalize the result of [1] to sets with the prop-
erty of Baire which are invariant under an equivalence relation. We also
obtain a product theorem for topological zero-one laws from which
Oxtoby’s (analogue of Kolmogoroff’s) zero-one law follows. Finally, we give
an example to show that Oxtoby’s zero-one law which Oxtoby proved
for topological spaces with countable pseudobases is not true in general.

1. Definitions and notation. A topological space X is said to be a Baire
space if no non-empty open subset of X is of first category. A subset D of
a topological space X is said to have the property of Baire if we can write D
a8 EAP, where F is an open subset of X, and P is a set of first category
in X. For properties of sets with the property of Baire and sets of first
category see [6] and [8]. A family B of non-empty open sets in a topological
space X is called a pseudobase if every non-empty open subset of X con-
tains a set from B (see [7]). For any set 4, 4 stands for the closure of A.
If AcXxY and yeX, AY stands for the set {#: (»,y) € A}. For any
set A, A° denotes the complement of 4.

Let (X, T) be a topological space and let ~ be an equivalence rela-
tion on X. For # € X we write [2] for the equivalence class containing .
For A « X we write A* for | [#], the saturation of 4. We say that

zed

a set A = X is invariant if A = A* (that is, A is saturated in the sense
of Bourbaki [2]).

For any sort of study of an equivalence relation on a topological space
we should have some relation between the topology and the equivalence
relation. In view of this we need the following definitions.

Definition 1. We say that (X, T, ~) is a triple if (X, T') is a topolo-
gical space, ~ is an equivalence relation on X and, for every open set A,
A* is open (that is, the decomposition induced by ~ is a lower semicon-
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tinuous decomposition in the sense of Kuratowski [6] or ~ is an open
relation in the sense of Bourbaki [2]).

Definition 2. If for every invariant set B with the property of
Baire in a triple (X, T, ~) either B or B° is of first category, then we call
(X, T, ~) a topological zero-ome iriple.

2. A topological zero-one law.

THEOREM 1. For a triple (X, T, ~),

(i) (X,T, ~) is a topological zero-one triple
if and only if

(ii) (a) for any two open sets U and V of second category, U*NV + @,

(ii) (b) for every invariant set A with the property of Baire and every
open set U of second category at every point, whenever ANU 18 of first cate-
gory, AnTU"* is also of first category.

Proof. (i)=(ii)(a). If U is an open set of second category, U* is
also open, and so it is an invariant set with the property of Baire and
is of second category. But then U*® 3 V, if V is of second category. Hence
U*nV # 0.

(i) = (ii)(b). If Z is an invariant set with the property of Baire and if Z
is of second category, by (i), Z° is of first category. This implies that ZNU
cannot be of first category for any open set U of second category.

(ii) = (i). Let Z be an invariant set with the property of Baire. Write
Z = UAP, where U is open and P is of first category. Suppose that Z is
not of first category. So we can assume that U is of second category at
every point (see [6], Section 11). Now Z° U < P and hence Z°nU is of
first category. By (ii)(b), Z°nU" is of first category.

Let U, be the union of all open sets of first category. By the Banach
category theorem, U, is of first category. By (ii)(a), U*U U, is dense in
(X, T), and so (U*U U,)° is nowhere dense. Now,

Z° < (Z°nTy)u(Z°nT*) V(T 'V T,)°.

Hence Z° is of first category.

The proof is completed.

In general, for a given triple, condition (ii)(a) is easy to verify, but
condition (ii)(b) is not. )

Definition 3. A triple (X, T, ~) is called a *-triple if (ii)(b) is satis-
fied for (X, T, ~). In this case we call ~ a *-relation on (X, T).

Example 1. Let (X, T) be a topological space and let ~ be defined
on X by # ~y for every =,y € X. Then (X, T, ~) is a *-triple.

Example 2. Let (X, T) be a topological space and let G be a group
of homeomorphisms on (X, T). Define ~gz; on X as follows: & ~gy if
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there is & g € @ such that g(z) = y. Then (X, T, ~g) is a *-triple. To see
this one has to use the Banach category theorem.

Remark 1. It is not difficult to find relations between condition
(ii)(a) and other similar conditions for a *-triple. We state a few.
Consider the following:

(iii) PEvery equivalence class is dense.

(iv) Almost every equivalence class is dense (i.e., there is a first category
set A such that x ¢ A implies that [x] i8 dense).

(v) There is a first category set A such that, whenever x ¢ A and U 13
an open set of second category, [#1NU # O.

(vi) There is an x such that, whenever U is an open set of second cate-
gory, [x]1NU # 9.

(vii) Complement of every invariant open set of second category is of
first category.

Then (iii) =(iv) = (v) =(vi) =(vii) < (ii)(a) for any *-triple.

(ii)(a) = (v) for any *-triple the topology of which has a countable
pseudobase (observe that if U,, U,,... is a countable pseudobase and
if U is any set, then U —[ (U U,] is nowhere dense). So, if U is an open

UgcU

'
set of second category, then there exists U; < U such that U; is of second
category. Hence

{x: [#]N"U = @ for some open set U of second category}

= {x: [#]nU; = O for some U; of second category }

and this set is of first category if (ii)(a) is assumed.

(ii)(a) = (iv) for any *-triple (X, T, ~), where (X, T) is a Baire space
with a countable pseudobase.

Because of Example 2 and Remark 1 we have the following strength-
ened form of the theorem of [1]. Note that the theorem of [5] is also in-
cluded here.

THEOREM 2. Let X be a topological space and let G be a group of homeo-
morphisms on X. Consider the following conditions:

(1) The orbit of some point is dense in X.

(2) Any invariant open set of second category is dense in X.

(3) For any two open sets U and V of second category, there is a g in G
such that g(U)NV = 0.

(4) For any invariant set B with the property of Baire either B or B°
18 of first category.

Then (1) =(2)=(3) < (4), and if X is a Baire space with a countable
pseudobase, then also (4)=(1).
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3. A product theorem for topological zero-one laws. Let (X, T;, ~;);;
be an indexed set of triples. Let (® X;, ®T;) be the product of topolo-
tel tel
gical spaces. Define ® ~; as follows: for z,y e ® X,,
iel iel
rQ® ~y iz ~y

tel

for finitely many ¢’s and

s =Y
for the rest of the ¢’s. Clearly,
(%) (8 X;, @T;, @ ~)
tel iel iel

is a triple.

THEOREM 3 (product theorem for topological zero-one laws). If
(X;y Ty ~i)ier 18 @ set of topological zero-one triples and if (x) 8 a *-triple,
then () 18 a topological zero-one triple.

Proof. Since each (X;,T;, ~;) is a topological zero-one triple, by
Theorem 1, (ii)(a) is satisfied for each (X;,T;, ~;). The proof will be
completed if we show that (ii)(a) is satisfied for ().

By the Banach category theorem it suffices to verify condition (ii)(a)
for basic open sets of second category. But this is clear from the
assertion that if a product set is of second category, then none of the coor-

dinate sets is of first category.
Theorem 3 applied to groups of homeomorphisms on topological
spaces Yyields '
THEOREM 4. Let G; be a group of homeomorphisms on (X;,T;) for
1e€l. Let
® G; = {{g:licr: 9: €G; and g; is the identity
sel
Jor all but finitely many i’s}.
If each (X;, T;, ~g,) 18 a topological zero-one triple, then so is
(®X;, ®T; Q ~pg)-
tel iel tel
Proof. Clearly,

® NGi = A ®Gi.
iel tel

Now the result follows from Theorem 3 and Example 2.

Remark 2. Theorem 4 applied to products of category analogues
of the Hewitt-Savage zero-one laws gives the category analogue of the
extended Hewitt-Savage zero-one law for measures proved by Horn and

Schach [4].
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Now the question arises, in view of Theorem 3, whether a product of
+.triples is a *-triple. As we shall observe in Section 4, this is not true in
general. However, for topological spaces with countable pseudobases,
the product of *-triples is a *-triple.

ProposITION 1. Let (X,T, ~,) and (Y, S, ~;) be *-triples, where
(X,T) and (Y, S) have countable pseudobases. Then

(X X YaT®Sv ~1 @ ~%a)
¢8 also a *-triple.

Proof. Let Z be an invariant set in X X Y with the property of Baire.

First we show that if Ux V is an open set in X x ¥ such that
ZN(U x V) is of first category, and U (respectively, V) is of second cate-
gory at every point, then Zn(U* x V) (respectively, Zn(U x V*)) is
of first category.

Evidently, the symmetry allows us to consider only the first case.
Let A = Zn(U x V). Since Z has the property of Baire and since X has
a countable pseudobase, by Theorem 15.2 of [8], Z¥ has the property of
Baire for all y except a set N, of first category. Since A is of first category,
by the Kuratowski-Ulam theorem [8] AY is of first category for all ¥ except
a set N, of first category. So, if y ¢ N,UN,, Z¥ is a set with the property
of Baire and Z'NU is of first category. Since (X,T, ~,) is a *-triple,
and since Z¥ is ~,-invariant, ZYNU" is of first category for y € V\(N,UN,).
It follows from Theorem 15.4 of [8] that the set ZN(U* x V) is of first
category.

Let U xV be an open set in X x Y of second category at every point
(thus both U and V are of second category at every point) and assume that
ZNn(U xV) is of first category. Using the initial observation we infer
that ZNn(U* x V) is of first category; using this observation once again
we conclude that

Zn(U*xV*) =Zn(UxV)*
is of first category.

Finally, given an open set U in X x Y which is of second category at
every point, we have

U =Ux7V;
tel

where U; X V; are open in X XY (and hence of second category at every
point). Assume that ZNU is of first category. We write
ZnU* = [ZN(U; x V,)*]
iel
and, by the case considered above, every set Zn(U;xV,)* is of first

category. From the Banach category theorem we conclude (note that
(U; x V;)* is open) that ZNU" is of first category. The proof is completed.

2 — Colloquium Mathematicum XXXIX.1
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Dr. E. Grzegorek has pointed out that the statement above fails
to be true if the sets U of second category at every point in the definition
of *-triples are replaced by the sets U of second category (which yields
a more general notion than *-triples); in Grzegorek’s counter-example
both (X, T) and (Y, S) are subspaces of the real line.

PROPOSITION 2. Let 2 be a set of equivalence relations on a space (X, T).
For every subfamily I' = Q, define the equivalence relation ~r by letting
@ ~py if there exist o,y ..., @, Ond ~y, ~gy ...y ~, from T
such that

T~ &yy By ~p Ty, ceey Xy gy~ Y.

If (X,T, ~r) is a *-triple for every finite I' = 2, then (X, T, ~g)
i8 also a *-lriple.

The proposition follows immediately from the equality
A0 = | J{A*~D): I < Q is finite}

and from the Banach category theorem.

THEOREM 5. If (X;, T;y, ~;)ic1 i8 a 86t of *-triples, where each (X, T;)
has a countable pseudobase, then () is also a *-iriple.

This theorem follows from Propositions 1 and 2.
In view of Theorems 3 and 5 we have

THEOREM 6. If (X;,T;, ~;) 18 a set of topological zero-ome triples
and if each (X;,T;) has a countable pseudobase, then (*) is also a topolo-
gical zero-ome triple.

A special case of Theorem 6 is

THEOREM 7 (Oxtoby’s zero-one law). If X s the Cartesian product
of a family of topological spaces each of which has a countable pseudobase,
and if E is a tail set with the property of Baire in X, then either E or X —E
18 of first category in X.

Proof. Specialize Theorem 6 to the case where each topological
space is as in Example 1.

4. Oxtoby’s zero-one law is not true in general. In this section we
give an example to show that Oxtoby’s zero-one law need not be true for
general topological spaces and we prove a restricted version of Oxtoby’s
zero-one law for general topological spaces. Our example exploits heavily
a recent construction of Fleissner [3] of two Baire spaces whose product
is not a Baire space.

We refer to the equivalence relation which induces the tail sets a8
Kolmogoroff’s equivalence relation and denote it by ~ throughout this
section.
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Let w, denote the set of all countable ordinals and equip it with the
discrete topology. Let o be the product of countably many copies of w,
equipped with the product of discrete topologies, say 7.

PROPOSITION 3. There is a tail set F = wY such that

(i) F X F and F°x F° are of second category at every point,

(ii) F x F° and F° x F are of first category in o xwy.

Let us first see how this proposition helps us in getting the example.

The following example shows that Oxtoby’s zero-one law i3 not true
in general.

Let X, = oY be equipped with the topology generated by F, F<,

and T. Then T = X, x F is a tail set in gxi,where X, =X, =... = w,
with the discrete topology. Then i=0

(a) F°x F and F x F° are of first category because of Lemma 1
below.

(b) Fx F and F° x F° are of second category because of Lemma 1
below.

(¢) T has the property of Baire, since
TA(Fx @ X;) «c F°x FUF x F°

i=1
and Fx ® X; is open.
i=1

(d) T and T° are both of second category, since ' > F X F and
T° > F°x F°. '

LEMMA 1. Let (X, T) be a topological space and let A — X be a dense
set such that A° is also dense. Let T, be the topology generated by A, A, and T.
Then a set B contained in A or in A° is of first category in (X, T,) if and
only <f B is of first category in (X, T).

Remark 3. In the example above we have essentially shown that
the Kolmogoroff’s equivalence relation is not a *-relation. This incidentally
shows that countable products of *-triples need not be *-triples. Even
a finite product of *-triples need not be a *-triple, as can also be easily

shown from Proposition 3.
Proof of Proposition 3. First we establish some notation.
For z e ol, let

z* = supz,.
n

Let ¢ = {z e w): 2* = x, for some n}. Let {4, B} be a partition
of the limit ordinals in w, into stationary sets (a set 8 < o, is said to be

stationary if S intersects every unbounded closed subset of »,). For D < w,,
write M(D) = {z € oV: z* € D}.
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With the above notation we have
(i) C is of first category:

C =UU{ew): 2, =a and z* = z;}.
i1 a

Now

frew): , = a and 2* =z} =[0,a]x[0,a]X ... x [a]x [0, a] X ...

is a nowhere dense set. But for a fixed ¢ and a variable, the sets {z € w:
z; = a and 2* = x;} form a family of nowhere dense sets all of which are
at a fixed distance from each other (in, for example, the first difference
metric). Hence their union is nowhere dense. Hence C is of first category.

(i) M(A)VM(B)UC = ol and M(A)NM(B) =@ (easy to prove).
(i) M(A)xM(B) and M(B)xM(A) are of first category, and

M(A)xM(A) and M(B)x M(B) are of second category at every point
(a result of Fleissner [3]).

(iv) If ¢ ~ y, then either € C or y € C or 2* = y*.

Indeed, if #* < y* and y ¢ 0, then there are infinitely many y,’s
greater than z*. Since # ~ y, infinitely many z,’s are greater than z",

which is not possible. So 2* < y* implies that y € C. Similarly, y* < 2*
implies that z € C.

(v) Let
F = {x € w): there exists y € M(A)—C such that z ~y}.

Then
FAM(A) «cC and F°AM(B) <.

FAM(A) < C since M(A)—C < F because of the definition of F,
and F <« M(A)UC because of (iv). FPAM(B) = C because of (ii) and
the inclusion FAM(A) < C.

(vi) Each of the sets
(FxF)A(M(A)x M(4)), (F° x F°)A(M(B) X M (B)),
(F x F°)A(M(A) x M (B)), (F°x F)A(M(B) x M(4))

is contained in C x wY Uw} x € and this last set is of first category.
(vii) Combining (iii) and (vi) we have the proposition.
The reason for the success of our example is that, though the set

X, x F defined in the example has the property of Baire, the set ¥ has it
not. This is strengthened by the following theorem:
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THEOREM 8 (generalized Oxtoby’s zero-one law). Let X be the Car-

tesian product of a family of topological spaces {X;: ¢ € I}. For every finite
set J < I, let

B(J) = { ® X; X B: B has the property of Baire in & X}.
teJ tel-J
If
JeI

then either E or E° is of first category.

Proof. Suppose that E° is of second category. We shall show that F
should be of first category.

Let U be open and let P be of first category such that E° = UAP.
Then U is of second category, and hence there is a non-empty basic open
set V < U such that every non-empty open subset of V is of second cate-
gory.

Let V = V(J,) x X(J,), where J, is a finite subset of I, V(J,) is

an open subset of ® X; and
ieJ

X(Jo)= ® Xi-

iel-J,
Since F € B(J,), we can write
ieJy

for some set B with the property of Baire in X (J,).

Now, EnV = V(J,) x B is of first category, since EnV < P.

Let B = WAQ, where W is open and @ is of first category. If B is
not of first category, then W @ and (V(J,) xW)A(V(J,) X B) =
= V(J,) xQ is of first category. Hence V(J,) x W, a non-empty open
subset of V, is of first category and this is a contradiction to the choice
of V.

The important point in the proof of Theorem 8 is the following lemma
which seems to be interesting in itself.

LEMMA 2. Let Y and Z be two topological spaces such that the product
Y X Z 13 a Baire space. If A c Y and B c Z are two sets with the property
of Baire and if A x B 18 of first category, then either A or B 18 of first category.

We named Theorem 8 the generalized Oxtoby’s zero-one law, since

it actually generalizes Oxtoby’s zero-one law. This is because of the fol-
lowing theorem:
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THEOREM 9. Let {X;: ¢ € I} be a family of Baire spaces with countable
pseudobases. Then
.A. c ® Xi

iel
is a tail set with the property of Baire if and only if A € B, of Theorem 8.
We give only the crucial lemma needed to prove this theorem.

LEMMA 3. Let Y be the Cartesian product of a family of topological
spaces {Y;};.; each of which has a countable pseudobase. Let X be a topolo-
gical space also with a countable pseudobase. If E <« X x Y is nowhere
dense, then B, is nowhere dense for all = except for a set of first category.

Proof. If Y is a countable product, the result follows from 2.5
of [7] and from 15.1 of [8].

If Y is an uncountable product, let @ = X x Y — E. Take a maximal
family of pairwise disjoint basic open sets G,,@;,... contained in G.
Since X x Y satisfies the countable chain condition (see [7], p. 161), this
family is countable. Since @,, G,, ... are all basic open sets, we can find
countably many coordinates ¢,, ¢;, ... such that

G, =H,x Q Y,
i#i),0,0.

where H, is open and

anXX ®Yik.

k=1
Let
Z=Q®Y, and H={H,.
k=1 n=1

Since ¥ is nowhere dense, H is an open dense set in X xZ. So H
is nowhere dense in Z for all « except for a set of first category. But

ECHOX X Y"-

i#1), 1y, ...

Hence E, is nowhere dense for all 2 except for a set of first category
of points in X.

Added in proof. The results of preprint [3] are included in a joint
paper of W. G. Fleissner and K. Kunen Barely Baire spaces, Funda-
menta Mathematicae (1978) (to appear); for some results related to Sec-
tion 4 we refer also to the second-named author’s paper Note on category
in Cartesian products of meirizable spaces, Fundamenta Mathematicae
(1978) (to appear).
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