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1. Introduction. Throughout the paper a space mcans a topological
space and we do not assume the continuity of functions. For any 4 < X,
the closure of A and the interior of A are denoted by Cl A and Int A, re-
spectively. Given a function f: X — Y, denote its set of continuity by
O(f) = {re X | f is continuous at «}.

A function f: X—Y is called quasi-continuous at a point x € X ([7],
p. 39) if for any open sets A = X and H < f(X), where v € A and f(x) € H,
we have AnIntf~!(H) # G. A function f: X — Y is called quasi-continuous
if it is quasi-continuous at cach point x of X.

A function f: X — Y is called somewhat continuous if for each open
set V < Y the condition f~'(V) %@ implies Intf (V) #@ (see [4],
p. 6).

It can be easily verified that any quasi-continuous function is some-
what continuous.

A space X is said to be a Baire space ([2], p. 75) if every non-empty
open set in X is of second category.

Let f be a function from a space X. We say that X is a Blumberg
space for f ([11], Definition 3) if there exists a dense subset D of X such
that the partial function f|D is continuous. Such a set D is called a Blum-
berg set for f.

A set D is called a full Blumberg set for f ([11], Definition 4) if D is
a Blumberg set for f and, for every open set A = X, the set f(DNA) is
dense in f(A4).

Let f: X — Y be a bijection. A set D in X is a simultaneous Blumberg
set for f ([9], p. 4562) if D is a Blumberg set for f and f(D) is a Blumberg
set for f~l.

Given a family F = {f; | f;: X - Y is a bijection, ¢ € I}, a set D in
X is called a simultaneous Blumberg set for F if D is a simultaneous Blum-
berg set for each f;,i e I.

As the most important results of this paper we consider the Theorem
and Corollary 3 in Section 3.
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2. Preliminary lemmas and propositions.

LeEMMA 1. Let X be a Baire space, let ¥ be a second countable space,
and let f: X - Y be quasi-continuous. Then C(f) contains a dense G,-sub-
set of X.

The lemma follows easily from Proposition 2 of [3], p. 985.

PROPOSITION 1. Let X and Y be topological spaces. Let f: X — Y be
a somewhat continuous bijection with the somewhai continuous inverse
f': Y->X. If G is a dense subset of X such that G < ClInt@, then
ClIntf(@) = Y.

Proof. Let us assume that Intf(@) is not dense in Y. Therefore,
there exists a non-empty open set B of Y such that BnIntf(G) = @.
Then it follows from somewhat continuity of f that 4 = Intf~!(B) # @.
Since

X = (Cl@ < CIClIntG = ClInt@G,

Int@ is dense in X. Thus @' = AnIntG #@. Now, f~! is somewhat
continuous, and so Int(f~')~! ¢’ = Intf(G') # @. Clearly,

Intf(@') = Intf(ANIntG@) < Intf(@).
On the other hand,
Intf(G') = Intf(A) = Intf(Intf~'(B)) < Intf(f~*(B)) < B.

Thus we obtain @ # Intf(G') < BnIntf(@), a contradiction.

Note that the set of continuity C(f) of a somewhat continuous
function need not be, in general, a dense subset of X (see [11]; Remark 1,
p. 34). Moreover, a somewhat continuous bijection need not be, in general,
quasi-continuous (see [8], Proposition 1, p. 174). However, we have the
following

COROLLARY 1. Let X be a Baire space, let Y be a second countable space,
and let f: X - Y be a quasi-continuous bijection with quasi-continuous
f': Y > X. If G is an open subset of X such that G contains a dense subset
of C(f), then ClIntf(@) = Y.

Proof. In fact, by Lemma 1, the set C(f) is dense in X. Thus G is
dense in X. Since G < C1@ = ClIntG@ and since every quasi-continuous
function is somewhat continuous, the corollary follows easily from Propo-
sition 1.

LEmMA 2. If Q,,Q., ... are dense G,-sets of a Baire space, then so
18 the set Q,NQ,N ...

The proof is similar to that of Theorem 1 in [6], § 34, p. 417.

PROPOSITION 2. Let X and Y be second countable Baire spaces and
let F' be a countable family of quasi-continuous bijections from X onto Y. If
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for each f,eF, ne N, the inverse function f,' is quasi-continuous, then
F admits a stmulianeous Blumberg set.

Proof. By Lemmas 1 and 2, the set () C(f,') contains a dense G,-set

n=1

D of Y. Let {G;} be a sequence of open subsets of Y such that
.D == n Gio
i=1

Let Intf;'(G;) = E;, . Then, in virtue of Corollary 1, for all ne N
and for all ie N the set E,;, is dense in X. Thus

EznnEi.n

i=1 n=1

is a dense G4-set of X by Lemma 2.
Arguments similar to those at the beginning of the proof show that

ﬂ C(f,) contains a dense Gy,-set D’ of X. Put H = EnD’. Again, by

Lemma, 2, H is a dense G,-set of X.
To prove that H is a simultaneous Blumberg set for F' we assume that
fi. is an arbitrary function from F. We have

H =—EnD D' c Ql C(f.) = C(f),

which shows that H is a Blumberg set for f,. Further, we obtain

fk(ﬂ n Intf,'(G)ND’) = fk(m n Intf, ' (&))

cfk(Q ,Q qCAKS f,,(n (&) —fk(fk‘(n @)

= (16 =D = 0f") < O(fz).

i=1

This shows that f,(H) is a Blumberg set for f;'. Thus the proof is
completed.

By our method we see that a simultaneous Blumberg set for F is
a G,-subset of X. This generalizes some results of Neugebauer (see [9],
p. 452).

The countability of ¥ is essential.

Example 1. Consider an uncountable family F* of quasi-continuous
bijections f, of [0, 1]. Given a € (0, 1/2], define f, as follows:

for a €(0, 1/2),

£.(@) | = for z € [0, a]U[1l —a, 1],
| —2+1 for x € (a,1—a);
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for a = 1/2)
3 z for z €[0,1/2),
fia (@) = i —2+3(2 for we[1/2, 1].

There exists no simultaneous Blumberg set for F*, since every point
@, € (0, 1) is a point of discontinuity of a function of the family F*, namely
Tzo if @0 <1/2y o1 fi_, if ®p >1/2.

PROPOSITION 3. Let f: X — Y be a quasi-continuous bijection. If D is
a simultaneous Blumberg set for f, then f(D) is a full Blumberg set for f~'.

Proof. Put D’ = f(D). We will show that for each open subset J of
Y the set f~!(D'NJ) is dense in f~'(J). Take an open subset K of X such
that Enf~'(J) #9. If 2, e KNnf~!(J), then f(x,) e J. Since f is quasi-
continuous at x,, there exists a non-empty open set U < K such that
f(U) = J. The density of D in X implies UNnD #@. But U < K and
U < f~'(J). Therefore

@ # UnD = Unf(f(D)) = Unf~(f(D)nJ) = Knf~(D'nJ).
Thus Knf~'(D'nd) # .
From Proposition 3 and Theorem 2 of [11] we obtain

COROLLARY 2. Let f: X — Y be a quasi-continuous bijection, where
X is a regular space, and Y is a Blumberg space for f~*. If D is a simultaneous
Blumberg set for f, then f~' is quasi-continuous.

Proof. In fact, f: X - Y is a quasi-continuous bijection and D is
a simultaneous Blumberg set for f. Thus, by Proposition 3, there exists
a full Blumberg set for f~'. Now, f~! is a function from a space Y, which is
a Blumberg space for f~!, into a regular space X. Hence Theorem 2 of
[11], p. 34, can be applied, and thereby f~! is quasi-continuous.

The author is indebted very much to the reviewer for the following
example showing that the regularity of X is essential in Corollary 2.

Example 2. Take the reals with the natural topology as Y. As X take
the reals with the topology which is finer than the natural topology by
assuming the set of irrationals to be open. The identity function from
X onto Y admits a simultaneous Blumberg set (namely, the set of irra-
tionals), but its inverse function is not quasi-continuous. The fact that
Y is a Blumberg space for f~! follows easily from Alas’ statement quoted
in Section 3.

3. Main theorem.

THEOREM. Let X and Y be second countable Baire spaces, let X be
regular, let F be a countable family of quasi-continuous bijections from X onto
Y, and let Y be a Blumberg space for f;*, for every f, € F. Then F admits
a simultaneous Blumberg set if and only if for every f, € F the inverse function
71 18 quasi-continuous.
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The Theorem follows easily from Proposition 2 and Corollary 2.

There exists an example ([9], Theorem 3, p. 454) of a function from
[0, 1] onto itself which is a quasi-continuous bijection and whose inverse
is not quasi-continuous. Another one-to-one function which does not admit
a simultaneous Blumberg set was given by Goffman [5].

Now we recall two definitions and a result due to Alas [1].

A pseudobase ([10], p. 157) for a space X with the topology T is a subset
P of T such that every non-empty element of T contains a non-empty
element of P.

A subfamily P of T is called o-disjoint ([12], p. 456) if

P=U{P,:n=12,..}

where each P, is a disjoint family.

STATEMENT (Alas). Let X be a Hausdorff, Baire space with a o-disjoint
pseudobase, let Y be a Hausdorff second countable space, and let f: X -~ Y
be a function. There exists a dense subset D of X such that the restriction
of f to D 18 continuous.

Every second countable space has a o-disjoint pseudobase. Therefore,
if X is a Hausdorff, Baire, second countable space, Y is a Hausdorff
second countable space, and f: X — Y is a function, then X is a Blumberg
space for f. Thus we have a result which follows from the Theorem and
Alags’ statement:

COROLLARY 3. Let X and Y be second countable, Hausdorff, Baire
spaces, let X be reqular, and let F be a countable family of quasi-continuous
bijections from X onto Y. Then F admits a simullaneous Blumberg set if
and only if for each f, € F', n € N, the inverse function f,* i3 quasi-continuous.

COROLLARY 4 ([9], Theorem 2, p. 452). Let f be a quasi-continuous
bijection from the wmit interval onto itself. Then f admits a simultaneous
Blumberg set if and only if f~! i8 quasi-continuous.

ProBLEM (P 1234). Does the Theorem remain true if the requirements
on X or Y to be Baire spaces are omitted? I conjecture that the answer
is negative.

The author thanks Professor J. J. Charatonik and colleagues from his
seminar for valuable remarks.
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