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AUTOMORPHISMS OF DIFFERENTIAL GROUPS
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The aim of this note is to determine all automorphisms of the dif-
ferential group L;. The problem arises only if r > 2, because L, is the
linear group G'L(n) and its automorphisms are known. We shall see that,
unlike the linear group, the differential groups of higher order admit
only regular automorphisms being simultaneously Lie group automor-
phisms.

Recall that differential group L; is a group determined by all in-
vertible r-jets belonging to I(R", R") with a source and butt 0. The com-
position rule of jets is the group multiplication in L;. We give this group
the structure of a Lie group by associating with every jet j"(f) a sequence
of parameters
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partial derivatives being taken at 0. In this way L} becomes a Lie group
of dimension
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whose elements L = (Ag , Az . ) are subject to the multiplication law
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where WP1"» are polynomials.
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Fix r>2 and n
H, = {(85,0,...,0, 42 . ..., 42 o)},
Gp = {(AﬂyAglaza ---,AZI...a 0,...,0)}.

p—1’

V

1, and write for p =2, ...,r

The following facts are stated in [2]:

(i) Every H, is an invariant subgroup of L.

(ii) If a group G is a subgroup of L; and contains a set G,, then ¢ = L;,.

Moreover, it is easy to show that

(iii) For every p >1, the elements of L, admit the factorization
(3) L = (43, ..., 4. ap_1 0,...,0)(d5,0,...,0, 45 I“Aﬁl ap...).

(iv) If r > 2, then H, is the centre of H,.

Notice also that subgroup H, is additive and its essential parame-
ters A; . are subject to the following composition law:
(4) c: = A® _ +B°

(11 a (11 a al dr

Finally, note that if L, = (4;3,0,...) and L = (B, B, ...), then
we get for C = Ly 'LL,

(5) Coy.ay = A;“Bﬁl__'ﬁpAﬁi Aﬁg for all p =2,...,7r
We use short notation '
4, = (43 ), A=A, L=(4,4,,...,4,);
h(L) = (hy(L), ..., h(L)) for any automorphism .
Formula (5) can be abbreviated to
(3") C,=A"'B,A...A (A repeated p times).

Parameters A; , Wwill be said to be of order s.

Recall also that the characteristic subgroup of a group G is defined
as a subgroup being mapped onto itself by every automorphism of G.

The following theorem is the main result of this paper:

THEOREM. For r = 2 any automorphism of the differential group L) s
the composite of an inner automorphism and of the automorphism

Az - Ag,

(6) h: o «
Aﬁv g Aﬁy _

1 a
?)QA ‘+e }V)QA e

+1 n4+1

where ¢ is a non-zero constant. If r > 2, the only automorphisms of the group
are the immer ones.
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LemMA 1. If a subgroup H, is characteristic in Ly, and h = (hy, ..., h,)
s an automorphism, then its part h' = (hy, ..., h,_,) does not depend on
parameters of order = p and, as a function of variables A,,..., A, ,, it
defines an automorphism of the group LE~'.

Proof. By the assumption and statement (iii), »’ depends only on
parameters up to order p —1. On the other hand, we have h' = noh,
where = 1s the natural projection

L;_>L£_l§ (Au--"Ar)_"(Aly-“,Ap—l)’ P,

Also, A’ is a homomorphism, because both factors are. H, being
characteristic, automorphisms % and its inverse ™' leave it invariant.
This implies that k' restricted to @, is a bijection onto L5~ '.

LEMMA 2. Let
(7) h(4,0,...) = (G(A), H,(4),,--, H,(A)), AeGL(n).

Then the matrixz function G is one of the forms

(8) G(A) = p(det 4)C-'AC,
or
(9) G(A) = p(det 4)C~1(4T)7'C,

where ¢ is a scalar multiplicative function, and C i8 a constant non-sin-
gular matrix.

Proof. Since (4,0,...)(B,0,...) =(4B,0,...), the function &
satisfies the equation G(4B) = G(A4)G(B), and so G is an endomorphism
of GL(n). Consequently, it must be of form (8) or (9), or G(A4) = ¢(det 4)
(cf. [1]). We have to eliminate the latter case.

In the latter case G(4) = E for every unimodular matrix 4 eSL(n).
Let H, be the first function of (7) non-vanishing on SL(n). It satisfies
the functional equation

(10) H,(AB) = G(A)H,(B)+H(4)G(B) ... G(B),

the brief notation (5’) being used. In the considered case (10) takes the
form

(11) H,(AB) = H,(A)+H(B).

This means that H, is commutative on SL(»n), so it must vanish on
its commutator supgroup. But it is the group SL(n) itself. We conclude
that if G is constant on SL(n), then all functions H,, ..., H, of (7) must
vanish. Hence h is constant on SL(n) which is impossible. This com-
pletes the proof.
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LeEmMA 3. Subgroup H, is characteristic.

Proof. Let h be an automorphism. For any element (¥, 0, ..., 0, X),
X = (X; ,), belonging to H, put

aj...a,
(12) h(E,O0,...,0,X) =(K(X),...).

From (4) and (5) it follows easily that K must fulfil equations
(13) K(X+Y)=K(X)K(Y) (matrix product),
(14) K(A'XA...A) =@ '(4)K(X)G(A)

for any X and every matrix 4 eGL(n),G(A) being defined by (7).

Equation (13) says that the matrix family {K (X)} is commutative.
Since for two commutative matrices the eigenvalues of their product are
the products of their eigenvalues, we have, for any k(X) belonging to
the spectrum of K (X) (1),

(15) KX +Y) = B(X)k(Y)
and, by (14),
(16) K(A-'XA ... 4) = k(X).

Setting 4 = aE, o' ' =2, into (16), we get k(2X) = k(X). But
by (15) there is k(2X) = k2%(X), hence k(X) = 1, because K is non-sin-
gular. Hence we proved that all eigenvalues of any matrix K (X) are
unities.

The commutative family {K (X)} has a non-null invariant subspace V
spanned by all its common eigenvectors. For every veV and X we have
K(X)v =v. From (14),

(17) G(A)K(A'XA ... A) = K(X)G(A).

By multiplying (17) with a v from V we get G(A)veV. It means
that V is also an invariant subspace of the family {G(A4)}, AeGL(n).
But this family with G (A4) being of form (8) or (9) is irreducible and,
consequently, V must be the full space of dimension ». But K(X)v = v
for any vector v means that K is the unit matrix.

Accordingly, taking into account (12), we can state that the para-
meters of order r do not influence the matrix parameters of the image,

ie., hy(d, Ay, ..., A,) = h,(A, 4,, ..., A,_,). Similarly, we can show that
h, does not depend on A, ,, and so on. Finally, we come to the conclu-

sion that h, depends only on A. Therefore, h(¥, 4,,...) = (¥, ...), and
this was to be shown.

LEMMA 4. Subgroups H,,p = 2,...,r, are all characteristic.

(1) k(X) can be established as an element k;;(X), if a basis is chosen in a way
such that all matrices K (X) are triangular.
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Proof. Immediate calculation shows that subgroup H, is the centre
of H,. Therefore, it is a characteristic subgroup of H,, which, by lemma 3,
is characteristic in L). Hence H, is characteristic in L;. Combining this
fact with lemma 1, we infer easily that also H,_, is a characteristic sub-
group of L, and so on.

LEMMA 5. To any automorphism h there is an inner automorphism g
such that the composite goh is the identity on the set G,, i.e.,

(18) goh(A4,0,...) = (4,0,...).

Proof. We start with (7). Let H, be the first function which does
not vanish on GL(n). It satisfies equation (10) for any A, BeGL(n).

Set B = tE, t > 0. Then, according to (8) or (9), G(B) = a(t)E. We
have a(t) = a2(l/t) > 0. The case a(t) = 1 is impossible, because then it
would be h(tE, 0, ...) = (E, H,(tE), ...) with H,(tE) non-vanishing simul-
taneously for ¢ # 1, and with the inverse automorphism A~! send a non-
-identity element from H, outside it, which contradicts lemma 3.

For the matrix B as defined above we have AB = BA for any A.
Making use of commutativity, we get from (10)

(19)  Hy(4)(a*(t)—a(t)) = H,(E)G(A) ... G(4)—G(A)H,(IE).

k times

Choose t, such that b = a*(t,) —a(f,) # 0. Then, by (19),
(20), H,(4) = UG(A) ... G(4d)—G(4) U,

where U = 1/bH,(tE). Denote by g, the inner automorphism generated
by the element L = (EF,0...0, U,0...0), U standing in place k. We
have

(groh)(4,0,...)=L"YG(A),0...0, H,(A),...)L
= (G(4),0...0,H,, ,(4),...),

i.e., the first non-vanishing function H, if exists, has now an index k> k.
In this way, by imposing succesively new inner automorphism g;, etec.,
if needed, we obtain an automorphism which maps (4,0,...) into
(@(4),0,...)

Note also that, up to the inner automorphism generated by element
(™1, 0,...), we can take C = E in formulas (8) and (9).

Now we prove that G(A) = A, provided C = E. By lemma 1, the
couple b’ = (h,, h;) defines an automorphism of L?. According to what
is already proved, we may assume h'(4,0) = (G(A), 0). By lemma 3,
h'(E, X) = (E, F(X)), where X = (X3,) and F = (F;,). By imposing &’
upon the equality

(47%,0)(E, X)(4,0) = (B, A~'XA4) and (E, X)(E, Y) = (E, X +7)
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we obtain
(21) F(A7'XAA) =G ' (A)F(X)G(A)G(4A),
{22) F(X+Y)=FX)+F(Y).

Set A = tE. Then G(4) = a(t) E, where a(t) = ¢(t")t° (¢ = 1). From
(21) we infer that F(tX) = a(t) F(X).

Substituting it to (22), we easily get a(t+38) = a(f) +a(s). Thus the
function a(t) is additive and multiplicative. Consequently, a(t) = ¢. This
implies that ¢(s) = s*~9™ and (21) takes the form

(23) F(A'XAA) = A7'F(X)AA
in the case of (8), and
(24) F(A'XAA) = (det A)*"B~'F(X)BB, B = (A7)},

in the case of (9).
In the former case G(A) = 4, and in the latter case G(A4)

= (det A)*™(AT)~". In order to prove the lemma, we have to eliminate
the latter case. Note that if n = 2, then both cases are equivalent, for
there is a constant matrix C such that

(25) (det A)(AT)™' = C'AC; for instance C =[_(1) é]

In terms of tensors, (24) means that F is a mapping of a symmetric
tensor space T™? of valence (1,2) into a space T®? of symmetric tensor
densities of valence (2,1) and weight 2/n. Moreover, F' is linear. It is
easy to show that such a linear mapping, being compatible with the
action of the linear group on the spaces in question, can exist non-triv-
ially only if » = 2. This completes the proof of the lemma.

LEMMA 6. Any automorphism of L%, up to an inner automorphism,
18 of the form (6).

Proof. Put (4, X) = (43, X3,), and let h(E, X) = (E, F(X)).
As it was shown in the proof of the preceding lemma, function F
must satisfy equation (23) and be linear. Thus F is a linear mapping
of the space T™? into itself, compatible with the tensor representation

(26) X > A7'XAA (= A"1X, ATAY).

But the tensor representation theory says (e.g., Weyl [3]) that the
representation (26) is the direct sum of two irreducible representations
whose invariant subspaces are

7 a 2 a
(27) Vl . ng == O’ I/2 : Xﬁy—ﬂ_—i 6(ﬂX$’)Q = 0.
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Since F is a linear operator in 7"? commuting with the representa-
tion (26), it must break up into the direct sum of two linear operators
acting in subspaces V, and V,, respectively. Each of them must be a mul-
tiple of identity. This means that for every X ¢T("? with decomposition
X = Y+Z there is F(X) =aY+bZ, YeV, and ZeV,.

In terms of components

2 2

(28) X5 =a (Xﬂy— ol 5(6X$)e) + b(Xp, + ] 05X30)
F being injective, constants a and b are different from 0. By an inner
automorphism we may obtain F(X) = Y +4c¢Z, ¢ # 0. To get (25) notice
that (4, X) = (4, 0)(E, A~'X), whence h(4, X) = (4, O)(E, F(A“X))
= (A, AF(A‘IX)).

LeMMA 7. If r > 2, then the automorphism (6) can be extended to
that of L; if and only if it is the identity (i.e., ¢ = 1).

Proof. Let » = 3. According to (1), we have (E, X,0)(E, Y, 0)
=(KE,X+Y,XY), where by XY we mean the set of arguments
(29) (XY); = 3X§(a1 Y?

ajagay agag)

Let LeH,. Then k(L) = (E, hy(L), ky(L)). By (1), hy fulfils the
equation

(30) hy(LyLy) = hy(Ly) + hy(Lsg) + ho(Ly) ho(Ly,)

(multiplication as above).
Let L, = (¥, X,0) and L, =(F, Y,0). If XY = YX, then L,L,
= L, L,, and from (30) we get

(31) . hz(L1)h2(L2) = hz(Lz)hz(Ll)-

In notation of the preceding proof we have h,(E, X, 0) = F(X)
= Y+cZ; Y,Z defined by (28).

Choose Xj;, = O%vgv, and Yj;, = t*uszu, such that O%u, = %0, =0
and t%u, = 0%, = 1. _

A straightforward calculation shows that in this case XY = Y X,
but (31) can hold if and only if ¢ = 1. It completes the proof for » = 3.
If r > 3, then, by lemma 1, the triple (h,, k,, ;) is an automorphism of
L}, and so, up to an inner automorphism, the couple (k,, h,) must be
the identity.

LEMMA 8. Let r > 2. Up to an inner automorphism, any automorphism
h = (hyy ..., h,) 18 uniquely determined by its part (hy, h,).
Proof. Itissufficient to show k,is uniquely determinedif2’ = (h, ...,

h,_,) is given. If we have it, we can apply lemma 1 and repeat it to h’,
and so on.
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According to the multiplication law (1), h, must be a solution of
the functional equation

(32) h(LL') = h,(L)B ... B+Ah,(L')+W (k' (L), ' (L)),

where L = (4,...) and L' = (B, ...). Let g be the difference of any two
solutions of equation (32). By subtracting we obtain from (32)

(33) g(LL) = g(L)B ... B+Ag(L)).

For L, L' from H, and A = B = E we have g(LL') = g(L)+g(L’).

Since ¢ is an abelian function on H,, it must vanish on its commutator
supgroup. But this is H,, because H,; is the largest subgroup of H,
such that the factor group H,/H, is abelian, and which does not contain
elements with A4, # 0. Consequently, g vanishes on H,.

Up to an inner automorphism, we can assume that g vanishes also
on the set @,, i.e., g(4,0,...) = 0. What remains to show is that g(X)
=g(¥,X,0,...) =0. From (33) we obtain easily

(34) 9(X+Y) = g(X)+g(Y),
(35) g(A7'XA44) = A'g(X)A ... A (A repeated r times).

Set A = 2F into (35). Then ¢g(2X) = 2" '¢(X), where r —1> 1. On
the other hand, from (34), g(2X) = 2¢(X). It gives ¢g(X) = 0. Taking
all these altogether, we have g(L) = 0 on the whole group L.

Proof of the theorem. If »r = 2, the theorem follows from lemma 6.
Let r = 3. By lemmas 1 and 4 the couple (k,, ;) is an automorphism
of L2. Up to an inner automorphism of L7, it has form (6), provided (18)
holds. By lemma 7 it is identity, which, by lemma &8, can be extended
to an automorphism of the whole group in a unique way, i.e., to the
identity automorphism.
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