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Aside from the Four Color Problem, the best known unsolved problem
in graph theory is the so-called Reconstruction Problem. This problem
originated in 1957 with a conjecture of Kelly [56] which states:

If @ and H are two graphs of order p > 3 whose vertex sets are V(@)
= {01, Vgy ...y Uy} a0d V(H) = {uy, %y, ..., u,}, and G—uv; is isomorphic
to H—u; (written G—v; = H—w;) for ¢ =1,2,...,p, then G = H.
In 1960, Ulam [7], p. 29, stated this conjecture in a more general setting,
using metric spaces; thus this conjecture is often referred to as the Kelly-
Ulam Conjecture. In 1964, Harary [4] reformulated the conjecture.
A graph G with V(@) = {v,, v, ..., v}, p = 3, is said to be reconsiructable
if G is determined (uniquely) from the p subgraphs G —v;,¢ =1, 2, ..., p.
Harary’s version of the Kelly-Ulam Conjecture can now be given.

The reconstruction conjecture. Every graph of order at least three
is reconstructable. '

The fact that a graph G of order p > 3 is reconstructable does not
necessarily imply the existence of a special technique to construct or
display G from the p subgraphs G—v, ve V(G@). In a finite number of
steps, one can determine all graphs of order p (disregarding the question
of isomorphism). For example, it would not be difficult to determine
.all possible p-by-p matrices which are the adjacency matrices of graphs
(although it might be quite difficult to establish which matrices correspond
to non-isomorphic graphs). Again, after a finite number of steps, the
graph @ could be located from among the graphs of order p. Certainly,
this procedure is likely to be highly inefficient; thus even when a graph
G or class of graphs @ has been proved reconstructable, the problem always
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remains to determine the most efficient algorithm or procedure to display
@G from its subgraphs G—wv, ve V(G). Another problem in this context
is the following:

Giver p graphs G;,7 =1,2,...,p, determine whether there exists
a graph G of order p whose vertices may be labelled v,, v,, ..., v, such
that G; =G@—v,for ¢ =1, 2,..., p. A discussion of this problem is given
in O'Neil [6]. In this paper, we assume that a graph G always exists.

The class of graphs which we consider in this article is the class of
disconnected graphs. Disconnected graphs are known to be reconstructable;
an existence proof of this fact is given in [2]. In [1] and [4] procedures
are presented which enable one to reconstruct a disconnected graph ¢
from the subgraphs G —o, ve V (@), in many instances. However, in both
cases the procedures are incomplete and without proof. It is the purpose
here to present a convenient and relatively uncomplicated technique for
constructing all disconnected graphs G from the subgraphs G —v, ve V(G).

In order to present this result, we begin with three lemmas due to
Harary (cf. [3] and [4]).

LeMMA 1. Let G be a graph with q edges and suppose V(@) = {v,, vy, ...
...y Vp}, where p > 3. Then it is possible to determine q and the degrees of
the vertices v; from the subgraphs G—v;, ¢ =1,2,...,p.

LEMMA 2. Every connected graph of order at least two has two or more
vertices which are not cut-vertices.

LemMA 3. If G is a graph with V(G) = {v1, Vg ..., ¥}, P = 3, then G
is connected if and only if at least two of the subgraphs G —v; are connected_

Reconstruction algorithm. We now proceed to the main result which
is the description of a reconstruction algorithm for disconnected graphs
of order p > 3.

Let G be a graph with V(@) = {9y, 9,, ..., v}, » = 3. By Lemma 3,
it is possible to determine whether G is connected from the subgraphs
G—v;,t=1,2,...,p. By Lemma 1, it is possible to determine the degrees
of the vertices v; from the subgraphs G —v;. If a vertex v; has degree 0,
i. e., if v; is isolated, then G consists of G —v; together with one additional
isolated vertex.

We henceforth assume that G has no isolated vertices. Let k (> 2)
denote the number of components of G. Each subgraph G —v; has k
components or more than ¥ components depending on whether v; is not
a cut-vertex or is a cut-vertex of G. By Lemma 2, every component of
@ contains at least two vertices which are not cut-vertices of G. We now
consider only those subgraphs G —v; having k components.

Among all subgraphs G —v» with ¥ components, select one having
a component of minimum order m. Suppose G — u is a subgraph containing
the component F' of order m. We note that F is the only component of
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G —u having order m and that F is obtained by the removal of « from
a component of G, i. e., F' = F'; —u for some component ¥, of G. Denote
the remaining components of G —u by F,, F,,..., F,. It thus follows
that ¥k —1 of the ¥ components of G are F,, Fs, ..., F,, which are imme-
diately discernible from G'—u. Hence, to reconstruct @, it remains only to
identify F,. We now consider three cases, depending on the orders of
the components F;, 2 << k.

Case 1. Some component F;, 2 < ¢ < k, has order at least m + 3. Assume
there are r components of order m +1 among the components F,, Fs, ...
«ooy Fy. (It may occur that r = 0.) Select a subgraph G —v; with ¥ compo-
nents having r+41 components of order m-1. Thus »; is necessarily
a vertex of a component of G having order at least m 4 3. Therefore, all
components of G —v; of order m 1 are components of G (one of which
is F;). Hence @ consists of all components of order m -1 in G — v; together
with all components among F,, F, ..., ¥, having order greater than
m-1.

Case 2. All components F;, 2 < i < k, have order m+2. We consider
all subgraphs G —v; with & components having two components of order
m + 1. Necessarily, in each such subgraph G —v;, one of the two compo-
nents of order m+1 is ¥,. If there is only one graph which occurs among
the pairs of components having order m -1, then this graph is F';, which
completes the determination of G. Otherwise, assume that every pair
consists of the same two (non-isomorphic) components, say F’' and F'".
One of F' and F'' is F,, of course, while the other graph is necessarily
obtained by deleting a non-cut-vertex from a component F;, 2 <4< k.
Hence, we need only remove a vertex which is not a cut-vertex from F,,
say, to produce the graph among F’ and F'’ which is not F,. The other
graph is then F,.

Case 3. At least one component among the F,, 2 < i< k, has order
m+1 and all others have order m+ 2. Consider all subgraphs G —v; with
k components having a component of order m. In each such subgraph
G —v;, every component having order greater than m is a component
of @¢. Thus, in this case, a graph H is a component of ¢ if and only if H
has order exceeding m and is a component of a subgraph G —ov; with %
components, one of which has order m. If each such subgraph G —o;
has ¥ —1 components isomorphic to H, then it follows immediately that
all ¥ components of G are isomorphic to H. If not all components of G
are isomorphic to H, then one only needs to observe that number of
components of G isomorphic to H is the maximum number of components
isomorphic to H among the subgraphs G —o; with ¥ components, one
of which has order m, except if G has components of order m 42, H is
a component of order m 41, and every component of order m 41 in each
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such G —v; is isomorphic to H. In this latter situation the number of
components of G isomorphic to H is one greater than the afore-mentioned
maximum.

This completes the proof.

One final remark might be in order here. By the complement G of
a graph G is meant that graph having the same vertex set as G and in
which two vertices # and v are adjacent if and only if v and v are not
adjacent in G. Let V(G) = {vy, v, ..., ,}, » >3, and suppose we are
given the subgraphs G—uv;, ¢ =1,2,...,p. If G is connected, we may
still be able to employ the theorem to reconstruct ¢. First, we determine
the graphs G—v;, ¢ = 1,2, ..., p. It follows directly that G —v;, = G—v,;
hence, if we find that G is disconnected, we can reconstruct G and then
determine G immediately. Of course, this procedure offers no technique
to handle a connected graph whose complement is also connected. These
remarks have also been observed by Harary and Kelly (see [3] and [4]).
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