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0. Introduction. Semi-invariant submanifolds of a Sasakian manifold
have been introduced by the authors of the present paper in [1].

The main purpose of the paper is to obtain new results on the geometry
of semi-invariant submanifolds in a Sasakian manifold.

First, in Section 1, we recall some fundamental results from [1], which
are used in the next sections.

In Section 2 we study the geometry of leaves of distributions which are
involved in the definition of a semi-invariant submanifold.

In Section 3 we obtain results on semi-invariant submanifolds of
a Sasakian space form. We deal with some special classes of semi-invariant
submanifolds with respect to their second fundamental form.

Finally, in Section 4, we study the natural f-structure on a semi-
invariant submanifold M and obtain theorems on decomposition for M.

1. Semi-invariant submanifolds of a Sasakian manifold. Let M be
a (2n+ 1)-dimensional almost contact metric manifold with (F, &, n, g) as the
almost contact metric structure, where F is a tensor field of type (1, 1), ¢ is
a vector field, n is a 1-form, and g is a Riemannian metric on M. These
tensor fields satisfy

(1.1) F?=—-I+n®¢, F()=0, n-F=0, n)=1,
(1.2) g(FX, FY)=g(X, Y)—n(X)n(Y)

for all vector fields X, Y tangent to M, where I denotes the identity
morphism of the tangent bundle TM.
~ All the manifolds and morphisms considered in this paper are assumed
to be differentiable of class C”.

The Levi-Civita connection on M is denoted by V. It is known that M is
a Sasakian manifold if and only if ([2], p. 73)

(1.3) (PxPY=g(X, )¢—n(Y)X
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for all X, Y tangent to M. Also, from (1.3) we obtain
(1.4) PyE=—FX.

Let M be an m-dimensional Riemannian manifold isometrically im-
mersed in a Sasakian manifold M. Denote by TM the tangent bundle of M
and by TM* the normal bundle to M. We assume that the structure vector
field ¢ of M is tangent to M and denote by {{} the 1-dimensional distribu-
tion defined by ¢ on M.

Definition. The submanifold M of the Sasakian manifold M is called
semi-invariant if it is endowed with the pair of distributions (D, D*) satisfying
the following conditions:

(i) TM =D@® D' @ {¢}, and D, D*, {¢} are mutually orthogonal to
each other;

(ii) the distribution D is invariant by F, that is, F(D,) = D, for each
xeM;

(iii) the distribution D' is anti-invariant by F, that is, F(D;) = T, M* for
each xe M (see [1]).

D and D' are called the invariant distribution and the anti-invariant
distribution on M, respectively. Suppose the dimension of D, (respectively,
D}) is 2p (respectively, g). Then it is easily seen that for p = 0 (respectively,
q = 0) the semi-invariant submanifold M becomes an anti-invariant submani-
fold [4] (respectively, an invariant submanifold [3]).

A generic semi-invariant submanifold is characterized by the condition
q =dim T, M* for any xeM. Fundamental results on the geometry of
generic submanifolds have been obtained by Yano and Kon in [6]. The
semi-invariant submanifold M is called a proper semi-invariant submanifold if
it is neither an invariant submanifold nor an anti-invariant submanifold. As
we have seen in [1], each hypersurface of M which is tangent to ¢ is a
typical example of proper semi-invariant submanifold.

Let M be a semi-invariant submanifold of a Sasakian manifold M. We
denote by the same symbol g both metrics on M and M. The projection
morphisms of TM to D and D* are denoted by P and Q, respectively. If H is
a vector bundle over M, then we denote by I'(H) the module of all
differentiable sections of H.

Using this notation we have

(1.5) X=PX+Q0X+n(X)¢
for all Xel'(TM) and
(1.6) FN=BN+CN

for all NeI'(TM*), where BNeI'(D') and CNeI'(TM%).
We denote by V the Levi-Civitd connection on M and by V' the linear
connection induced by ¥ on the normal bundle TM*. Then the equations of



Gauss and Weingarten take the form

(1.7) VY =V,yY+h(X,Y),

(1.8) PxN=—AyX+VxN,

respectively, for all X, Yel'(TM) and NeI'(TM*'), where h is the second

fundamental form of M and A, is the fundamental tensor of Weingarten
with respect to the normal section N. Moreover, we have

We need the following results obtained in [1].

LemMma 1.1. Let M be a semi-invariant submanifold of a Sasakian manifold
M. Then

(1.10) PVyFPY — PAgyy X = FPVy Y —(Y) PX,
(1.11) QVy FPY —QAgoy X = Bh(X, Y)—15(Y)QX,
(1.12) n(Vx FPY — Aggy X) = g(FX, FY),
(1.13) h(X, FPY)+ViFQY = Ch(X, Y)+FQV, Y

Jor all vector fields X, YeI (TM).

LEMMA 1.2. Let M be a semi-invariant submanifold of a Sasakian manifold
M. Then for any X eI'(TM) and NeI'(TM*) we have

(1.14) FPAy X = PAcy X —PVy BN,
(1.15) BVLN = QVxBN—QAcw X,
(1.16) h(X, BN)+ ViCN+FQAy X = CViN,
(1.17) n(VxBN—Acy X) = 0.

LEMMA 1.3. Let M be a semi-invariant submanifold of a Sasakian manifold
M. Then

(1.18) h(X,& =0, Vxyt=-—FX for any XeI (D),
(1.19) h(Y,&) = —FY, V, (=0 for any YeI'(D%),
(1.20) ApyV =AU for all U, Vel (DY),
(1.21) h(, &) =0, V,&=0.

THEOREM 1.1. Let M be a semi-invariant submanifold of a Sasakian
manifold M. Then

(i) the distributions D* and D' @ (¢} are always involutive;

(ii) the distributions D and D @ D* are never involutive;
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(iii) the distribution D @ {¢| is involutive if and only if the second funda-
mental form of M satisfies

(1.22) h(X,FY)=h(FX,Y)

for all X, YeI (D).

The submanifold M is called totally geodesic if h vanishes identically on
M. From (1.19) we obtain

LEMMA 1.4. (a) There exist no totally geodesic proper semi-invariant
submanifolds in a Sasakian manifold.

(b) If M is a totally geodesic semi-invariant submanifold of a Sasakian
manifold, then it has to be an invariant submanifold.

Now we introduce a weaker condition on the second fundamental form
h. We say that M is (D, D*)-geodesic if h(X, Y)=0 for all XeI'(D) and
YeI'(D%). Then, using (1.9) and (1.18), we obtain

LEMMA 1.5. Let M be a semi-invariant submanifold of a Sasakian manifold
M. Then M is (D, D*Y)-geodesic if and only if one of the following conditions is
satisfied:

(1) AyXeI'(D) for any XeI'(D) and Nel' (TM%Y);

(2) AyYeI(D* @ !&)) for any YeI'(D* @4¢&)) and Nel'(TM%).

2. Geometry of leaves on a semi-invariant submanifold in a Sasakian
manifold. Let M be a semi-invariant submanifold of a Sasakian manifold M.
The purpose of this section is to study the geometry of leaves of distributions
involved in the definition of M.

- LeMMA 2.1. Let M be a semi-invariant submanifold of a Sasakian manifold
M. Then

2.1) h(X, FY)=h(FX,Y) for all X, YeI'(D)
if and only if
(2.2 g(h(X, FY), FZ)=g(h(FX, Y), FZ)

for all X, Ye I'(D) and Z eI (D%).

Proof. It is easily seen that we have only to prove that (2.2) implies
(2.3) Ch(X,FY)=Ch(FX,Y) for all X, YeI'(D).

We take N eI (D), where D is the complementary orthogonal subbundle to
F(D*Y) in TM*. Then, using (1.2), (1.9), and (1.14), we obtain

24)  g(h(X, FY), N)
=g(An X, FY) =g(PAy X, FY)= —g(FPAry X+ PVyBFN, FY)
= —g(FPAFNXs FY) = —g(AFNXa Y) = —g(h(Xs Y)a FN)
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Thus, (2.3) follows from (2.4) because h is a symmetric tensor field on M.
From (iii) of Theorem 1.1 and Lemma 2.1 we get

CoROLLARY 2.1. Let M be a semi-invariant submanifold of a Sasakian
manifold M. If Ag, XeI'(DY) for all XeI'(D) and ZeI'(D"), then the
distribution D @ (&} is involutive.

The semi-invariant submanifold M is called (D @ {¢})-geodesic if
(2.5) h(X,Y)=0 for all X, Yel'(D® {&)).
By (1.18) and (1.21) we see that M is (D @ {&))-geodesic if and only if (2.5)

holds for all X, YeI'(D).

THEOREM 2.1. Let M be a (D @ |&})-geodesic semi-invariant submanifold of
a Sasakian manifold M. Then each leaf of the distribution D ® |} is totally
geodesic immersed in M.

Proof. First, using (1.3) and (1.7)«1.9) we obtain
(2.6) g(VxZ, FY)=¢g(h(X, Y), FZ)
for all X, Yel'(D@® !¢}) and Ze'(DY).

Next, since M is kD @ |&})-geodesic, using (1.22) and (2.5) we infer that
D @ (¢} is involutive. Let M* be a leaf of the distribution D @ {¢}. Then,
from (2.6) we get
(2.7) g(A} X, Y) = —g(h(X, FY), FZ) =0

for all XeI'(TM¥*), YeI'(D), and for Z normal to M* but tangent to M,
where A% is the Weingarten tensor of M* with respect to Z.

On the other hand, using the Weingarten equation for the immersion of
M* in M and (1.18) we have

28) g4z X,8) = —g(VxZ,8) =9g(Z,Vx) = —9g(Z,FX)=0

for all X and Z from (2.7). Thus, by (2.7) and (2.8), M* is totally geodesic
immersed in M. Finally, by (2.5), M* is totally geodesic immersed in M.

As we have seen in Theorem 1.1 the distribution D* is always involutive.
We denote by M a leaf of the distribution D*.

THEOREM 2.2. The leaf M* is totally geodesic immersed in the semi-
invariant submanifold M if and only if

(2.9) h(X, Y)el(D) for all XeI'(DY) and Y eI (D).
Proof. Using (1.9) and (1.10) we obtain
(2.10) g(FPVyZ,Y) = —g(h(X, Y), FZ)

for all X, ZeI'(D') and YeTI' (D). We denote by F’ the linear connection
induced by ¥ on M' and by K the second fundamental form of the

6 — Colloquium Mathematicum XLVIIL.2
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immersion of M* in M. Hence the Gauss equation is of the form
(2.11) VxZ=VyZ+h (X, 2)

for all X, Z tangent to M*. Then from (2.9)«2.11) we obtain
(2.12) g(W (X, 2), FY)=g (h(X,Y), FZ)=0

for all X, Z tangent to M* and YeI'(D).
On the other hand, by (1.17) we have n(Vy Z) = 0, which together with
(2.11) implies

(2.13) n(K(X, Z))=0

for all X, Z tangent to M*'. Finally, the theorem follows from (2.12) and
(2.13).
The semi-invariant submanifold M is called D*-geodesic if

(2.14) h(X,Y)=0 for all X, YeI'(DY).

Now, using Theorem 2.2 we prove

THEOREM 2.3. Let M be a (D, D*)-geodesic semi-invariant submanifold of
a Sasakian manifold M. Then

(1) each leaf of the anti-invariant distribution is totally geodesic immersed
in M; ,

(2) each leaf of the anti-invariant distribution is totally geodesic immersed
in the Sasakian manifold M if and only if M is D*-geodesic.

Proof. Let M* be an arbitrary leaf of the anti-invariant distribution.
We denote by h' and h the second fundamental forms of M* in M and M,
respectively. Then we have

(2.15) h(X, Y)=h(X, Y)+HK(X,Y)

for all X, Y tangent to M*. The assertion (1) follows from Theorem 2.2, and
the assertion (2) is implied by (1) and (2.15).
From Theorems 2.2 and 2.3 we obtain

COROLLARY 2.2. A generic semi-invariant submanifold M of a Sasakian
manifold M is (D, D*)-geodesic if and only if each leaf of the anti-invariant
distribution is totally geodesic immersed in M.

Moreover, concerning the immersion of each leaf of D* in M we have

THEOREM 24. Let M be a semi-invariant submanifold of a Sasakian
manifold M. Then each leaf of D* is totally geodesic immersed in M if and only
if the following conditions are fulfilled:

(1) VxFYeTI' (F(DY) for all X, YeI'(DY);

(2) h(X, ZyeI'(D) for all XeI'(D*) and ZeI' (D @ D%).
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Proof. For all X, YeI'(D"'), adding (1.11) and (1.13), we obtain
(2.16) h(X, Y) = FQ(Apy X)—F (V3 FY)—Q(Vx Y)
since n(h(X, Y)) =n(QVxY)=0. Next, (1.6) together with (2.16) implies
(217)  h(X, Y)=FQ(Asy X)—C(PxFY) for all X, YeI'(D").

Suppose each leaf of D' is totally geodesic immersed in the Sasakian
manifold M. Then, by (2.15) and Theorem 2.2, we obtain condition (2).
Moreover, (2.17) implies C(Vx FY) = 0, which is equivalent to condition (1).

Conversely, suppose conditions (1) and (2) are satisfied. Then, from (2.17)
we get h(X, Y) =0 for all X, YeI'(D'). On the other hand, from condition
(2) and Theorem 2.2 we infer that any leaf of D' is totally geodesic immersed
in M. Finally, by (2.15), any leaf of D' is totally geodesic immersed in the
Sasakian manifold M.

THEOREM 2.5. Let M be a generic semi-invariant submanifold of a Sasa-
kian manifold M. Then each leaf of the anti-invariant distribution is totally
geo{esic in M if and only if M is (D, D*)-geodesic and D*-geodesic immersed
in M.

The theorem follows from Theorem 24.

_ 3. Semi-invariant submanifolds of a Sasakian space form. Suppose that
M (c) is a Sasakian space form of constant F-sectional curvature ¢ and that
M is a semi-invariant submanifold of M(c). The curvature tensor R of M(c)
is given by

~ c+3 c—1,

31 R(X,Y)Z =4 g(Y, Z)X—g(X, Z-)Y}+T M(X)n(2)Y —
—n(N)n(2) X +g(X, Z)n(Y)S—g(Y, Z)n(X){+
+9(Z,FY)FX—g(Z, FX)FY+29(X, FY)FZ}

for all X, Y, Z tangent to M(c).
Then the Codazzi equation is of the form

32  (Vxh(Y, 2)—(Vyh)(X, Z)

= c_:_l {9(Z, FPY)FQX —g(Z, FPX)FQY +29(X, FPY)FQZ)}
for all X, Y, Z tangent to M, where Vyh is defined by
(3.3) (Pxh)(Y, Z) = Vi(h(Y, 2))-h(Vx Y, Z)—h(Y, Vx Z).

We say that the second fundamental form h of M satisfies the classical
equation of Codazzi if

(34) (Vx (Y, Z) =(Vy (X, Z)
for all X, Y, ZeI'(TM). Then we can state
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THEOREM 3.1. Let M be a semi-invariant submanifold of a Sasakian space
form M(c) with ¢ # 1. If the second fundamental form of M satisfies the
classical equation of Codazzi, then M is either an anti-invariant submanifold or
an invariant submanifold.

Proof. Suppose M is not an anti-invariant submanifold of M (c). Then
in (3.2) we take a unit vector field XeI'(D) and Y = FX. Using (3.4) and
taking into account that ¢ # 1 we obtain FQZ = 0 for each Ze I'(TM). This
means that M is an invariant submanifold.

The semi-invariant submanifold M of a Sasakian manifold M is called
(D, DY)foliate if it is (D, D*)-geodesic and the distribution D @ {¢} is
involutive.

THEOREM 3.2. A semi-invariant submanifold M of the Sasakian manifold M
is (D, D*)-foliate if and only if
(3.5) AyFP+FPAy =0

for all NeI'(TM*Y).

Proof. By means of (iii) of Theorem 1.1 we see that M is (D, D*)-foliate
if and only if

(3.6) g(h(X, FPY), N) = g(h(FPX, Y), N)

for all X, YeI'(TM) and NeI'(TM*"). Then, using (1.9) we obtain the
equivalence of (3.6) and (3.5).

THEOREM 3.3. Let M be a (D, DY)-foliate proper semi-invariant submani-
fold of a Sasakian space form M(c). Then ¢ < —3.

Proof. We take X, YeI'(D) and ZeI (D') such that Z = FN for
a certain section N eI (F(D%')). Then, by (1.14), (1.15), and (1.17) we obtain

(3.7 VyZ = BVy N—FPAyY
since CN = 0. Next, by (1.13), (1.19), (3.3), (3.6), and (3.7), we have
(38)  (Fxh(Y, 2)-(Vyh(X, 2)

= h(Y, FPANX)—h(X, FPANY)+n(Vx Y)FZ—n(Vy X)FZ

for all X, Yel'(D) and ZeI'(D") such that Z = FN, where NeI(F(D"Y).
Substituting FY for X in (3.8) and using (3.2), (3.5), (1.2), and (1.12) we obtain

l1—c

(3.9) 2h(FY, AyFY)+2g(FY, FY)N=Tg(FY, FY)N.
Finally, from (3.9) we get
Bl  0<gUnFY, AvFY) = —22 (Y, Fr)g(v, M)

which implies ¢ < —3.
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From Theorem 3.3 we obtain

COROLLARY 3.1. Let M be a (D, D*)-foliate semi-invariant submanifold of
M(c). If c > —3, then M is either an anti-invariant submanifold or an invariant
submanifold.

4. f-structure on a semi-invariant submanifold. Let M be a semi-invariant
submanifold of a Sasakian manifold M. We put ¢ = Fo P and, using (1.1), we
obtain @3+ ¢ = 0, that is, ¢ is an f-structure on M (see [5]). The purpose of
this section is to study the fundamental properties of the f-structure ¢. First,
by direct computation using (1.2), (1.3), (1.5), and (1.10}{1.12) we obtain

LemMMA 4.1. Let M be a semi-invariant submanifold of a Sasakian manifold
M. Then

4.1) Bh(X,Y)=(Vx@®) Y—Apogy X—(VxF) Y

for all X, YeI'(TM).
The f-structure ¢ is said to be parallel if V¢ =0 for any X e I'(TM).

THEOREM 4.1. Let M be a semi-invariant submanifold of a Sasakian

manifold M. If the f-structure ¢ is parallel, then M is an anti-invariant
submanifold of M.

Proof. We take YeI'(D) in (4.1) and using (1.3) we obtain Bh(X, Y)+
+g9(X, Y)¢ =0, which implies g(X, Y) =0 for all XeI'(TM). This is pos-
sible only when M is an anti-invariant submanifold.

Remark. From the proof of Theorem 4.1 we see that its assertion
follows even when (Fy¢)Y =0 for any XeI'(TM) and Y eI (D).

It is interesting to find weaker conditions than that of ¢ being parallel
and obtain theorems of decomposition for proper semi-invariant submani-
folds. The remaining part of the paper deals with this problem.

Definition. The f-structure ¢ is said to be n-parallel if for all X,
Yel'(TM) we have

(4.2) (Vxe)Y =g(PX, PY){—n(Y)PX.

. LEMMA 4.2. Let M be a semi-invariant submanifold of a Sasakian manifold
M. Then the f-structure ¢ is n-parallel if and only if

43) Bh(X, Y) = n(Y)QX —QApgy X
for all X, YeI'(TM). |
Proof. Using (1.3), (1.18) and (1.19) in (4.1) we obtain

4.4 Bh(X, Y)={(Vxe@)Y—g(PX, PY)¢(+n(Y)PX}+
+n(Y)QX —QApgy X — PApgy X .

On the other hand, (4.3) together with (1.9) implies

4.5) PApgy X =0 for all X, YeI'(TM).
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Finally, the lemma follows from (4.4) and (4.5).

THEOREM 4.2. Let M be an m-dimensional generic semi-invariant submani-
fold of a (2n+ 1)-dimensional Sasakian manifold M. If the f-structure ¢ is
n-parallel, then M is locally the Riemannian direct product M, x M,, where
M, is a (2m—2n— 1)-dimensional totally geodesic invariant submanifold of M
and M, is a (2n—m+ 1)-dimensional anti-invariant submanifold such that the
structure vector field & is normal to M,.

Proof. Since M is a generic semi-invariant submanifold, we have F = B
on TM*'. Then, from (4.3) we get

(4.6) h(X,Y)=0 for all XeI'(TM) and YeI' (D).
By (4.6) and (1.13) we obtain
4.7) ViFQY—FQVyY =0 for all X, YeI'(TM).

Now, we take YeI' (D@ (¢}). Then (4.7) implies Py Yel'(D@® (&}) for
each X el (TM). Consequently, the distribution D@ {¢} is parallel
For any Yel(D') from (4.2) we obtain FPFyY =0, which implies
VyYel (D' ® {&}) for any X e(TM).

On the other hand, from (1.17) we get n(FxY) =0 for all XeI'(TM)
and YeI'(D'). Hence Vy YeI'(D') for all XeI'(TM) and YeI'(D'), which
means that the distribution D' is also parallel. Therefore, M is locally the
Riemannian direct product M; x M,, where M, is a leaf of the distribution
D ® (¢} and M, is a leaf of D*. Of course, M, is an invariant submanifold of
M and M, is an anti-invariant submanifold such that ¢ is normal to M,.
Moreover, by (4.6) the conditions of Theorem 2.1 are satisfied. Hence M, is
totally geodesic immersed in M. The proof is complete.

THEOREM 4.3. Let M be an m-dimensional generic semi-invariant submani-
fold of a (2n+ 1)-dimensional Sasakian space form M (c) with ¢ # —3. Suppose
the f-structure ¢ of M is n-parallel. Then M is an anti-invariant submanifold
of M(c).

Proof. By a direct computation, using (4. 6) we. obtain (Vyh)(Y, Z)
= —h(Y, VxZ) for all X, Ye I'(TM) and ZeI'(D). Then from (3.2) we get

4.38) 57— {g(Z, FPY)FQX —g(Z, FPX)FQY} = h(X, Vy Z)—h(Y, Vy Z)

for all X, YeI'(TM) and ZeI'(D). In (4.8) we take YeI'(D), Z = FY, and
by (4.6) and Lemma 1.3 we obtain

4.9) ' f_— g(FY, FY)FQX = —n(Vy FY)FQX

for all Xel'(TM).
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Using (1.12) together with (4.9) we have

(4.10) c—j—"’ g(FY, FY)FQX =0

for all YeI'(D) and X eI'(TM). Since M is a generic semi-invériant sub-
manifold and ¢ # -3, from (4.10) we obtain FY = O for all Y e I'(D). Thus M
is an anti-invariant submanifold. The proof is complete.

By R?"*1(—3) we mean the Sasakian space form with constant
F-sectional curvature ¢ = —3 and with standard Sasakian structure in the
Euclidean space R*"*! (see [2], p. 99).

THEOREM 4.4. Let M be a generic (D, DY)-foliate proper semi-invariant
submanifold of the Sasakian space form R*"*!(—3). Then M is locally the
Riemannian product M, x M,, where M, is a (2m— 2n— 1)-dimensional totally
geodesic invariant submanifold of R*"*'(—3) and M, is a (2n—m+ 1)-dimen-
sional anti-invariant submanifold such that the structure vector field & is normal
to M,.

Proof. From (3.10) we get Ay X =0 for all XeI'(D) and NeI'(TM%4).
Thus (4.3) is satisfied for any X e I'(D) and Y € I'(TM). Using (i) of Theorem'
1.1 and (1.19) we obtain

4.11) gWV:FPY,Z)=0

for any YeI'(TM) and ZeT' (D). Now, (1.11) together with (4.11) implies
(4.3) for all YeI'(TM) and X =¢. Next, we take XeI'(D') and
YeI'(D* @ {¢}) in (1.11) and obtain (4.3). Finally, since M is (D, D*)-geodesic,
we obtain (4.3) for X e I'(D') and Y e I'(D). Thus we infer that (4.3) holds for
all X, YeI'(TM). Hence, by Lemma 4.2, the f-structure ¢ on M is n-parallel
and, by Theorem 4.2, the proof is complete.

The second fundamental form h of a semi-invariant submanifold M is
said to be parallel if Vxh=0 for all XeI'(TM). From Theorem 3.1 we
obtain

CorOLLARY 4.1. Let M be a  generic semi-invariant submanifold of
a Sasakian space form M (c) with ¢ # 1. If the second fundamental form of M is
parallel, then M is an anti-invariant submanifold of M (c). 4

By $2"*1(1) we mean a (2n+ 1)-dimensional sphere endowed with
the natural Sasakian structure of constant F-sectional curvature c =1
(see [2], p- 99).

THEOREM 4.5. Let M be a generic semi-invariant submanifold of the sphere
S2n+1(1). If the second fundamental form h of M is parallel and the distribution
D ® (¢} is involutive, then M is an anti-invariant submanifold of S*"*!(1).
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Proof. Since M is a generic semi-invariant submanifold, we have C = 0.
Suppose Fxh =0 for all XelI'(TM), that is,

(4.12) Vx(h(Y, Z))=h(Vx Y, Z)—h(Y, VxZ) =0

for all X, Y, ZeI'(TM). In (4.12) we take X eI'(D*) and Z = ¢&. Then, using
(1.19) and (1.13) we obtain

(4.13) h(X, FPY)=0

for all XelI'(DY) and YelI'(TM). From (4.13) it follows that M is
a (D, D*)-geodesic semi-invariant submanifold of $2"*!(1). Since the distri-
bution D @ {¢&] is involutive, M is a (D, D*)-foliate semi-invariant submani-
fold. Taking into account that ¢ =1 and M is generic, we see that the
assertion of theorem follows from Corollary 3.1.
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