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Introduction. An operator semi-stable measure on RY is a limit law
for sums of the form A,(é,+ ... +& )+h,, where § are RY-valued
identically distributed random variables, A, are non-singular linear
operators in R", h, € RV, and

imk,, k;! =r.
f1—>00

Such measures for N =1 were considered by Kruglov [5] and in
a multidimensional case by Jajte [4]. In order to define an operator
semi-stable measure as a limit of a sequence of probability measures we
need some preliminaries.

Let A be a linear operator in R and 1 a Borel measure. We define
a measure A1 by the formula

ANE) = A(A™'E)

for all Borel subsets E of RY. For two probability measures u and 2 the
following easily-verified equations hold:

(AB)u = A(Bu), A(usd) = ApxAd, (Au) (2) = p(4*a),

where A and B are linear operators on R¥, A* denotes the adjoint operator,
and g is the characteristic function of u. For any Borel measure 1 its sup-
port 8; is a closed subset of RY such that the complement of S, has A-meas-
ure zero and A(U,) > 0 for any neighbourhood U, of xz € 8,. A measure
A is said to be full if its support is not contained in any (N —1)-dimensional
hyperplane of RY.

Definition. A probability measure » is said to be operator semi-stable
if it is of the form

v =lim A, u*n+8(h,),

fR—>00
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where A, are non-singular (') linear operators in RY, u is a probability
measure, h, € RV, and the sequence %, < k;<< ... of positive integers
is such that

limk,, k' =r for some r (L<7< ).
n—oo
Here “lim” denotes the weak limit of a sequence of probability
measures and the power u*r is taken in the sense of convolution.

1. A characteristic function of an operator semi-stable measure.
Jajte proved in [4] the following theorem:

THEOREM 1.1. A full probability measure u on R is operator semi-stable
if and only if it 18 infinitely divisible and there exist @ number ¢ (0 < ¢ < 1),
a vector b’ € RY, and a non-singular linear operator B in RN such that the
formula -

(1.1) ut = Busd(h')

holds. The spectrum of B is contained in the disc {|2|* < c}. The eigenvalues
of B satisfying |A*? = ¢ are simple. Furthermore, u can be decomposed into
the product u = uy*uy of two measures concentrated on B-invariant sub-
spaces X and Y, respectively, such that RN =X@Y , ux i3 a purely Poissonian
operator semi-stable méasure full on X, and uy i3 a Gaussian measure full
on Y. The spectrum of B|X 18 contained in the disc {|z|* < ¢} and the equalzty
|A]* = ¢ holds for the eigenvalues of B|Y

Infmltely divisible measures for which the representation (1.1) holds
for some ¢ (0 < ¢< 1) and a non-singular linear operator B such that
SpB < {|z|* < ¢} are said to be quasi-decomposable (by the pair (¢, B)).

Remark 1.1. If u 18 quasi-decomposable, then it is quasi-decomposable
by some. pair (a, A) such that ||A]| < 1.

Proof. Iterating (1.1) we obtain the equality u" = B"u+d(h,).
By the inequality
lim [B™'" = r(B)< Ve <1,
n—-00
where 7(B) denotes the spectral radius of B, we have ||B"|| — 0. Thus there
exists an m, such that |B"|| < 1, and putting A = B™ and a = ¢"° we
get u® = Au+6(h), he RV, SpA < {j2]* < a}, which means- that u is
quasi-decomposable by the pair (a, 4).
Remark 1.2. If u is quasi-decomposable, then it is operator semi-stable,
even without the assumption that u is full.

(*) As was pointed out by Professor C. Ryll-Nardzewski the word ‘‘non-singular”
may be omitted and we get the same class of limit laws.
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The proof is quite the same as the proof of the sufficiency of Theo-
rem 1.1 in [4] (p. 35).

Now, let us recall the Lévy-Khintchine (L-K) representation of the.
characteristic function of an infinitely divisible measure u:

. . ) 1
1) o) = explitm, o)~ Do, 0+ [ Ko, 9 M),
BN\ (0}
where m € RY, D is a non-negative linear operator in R¥, M an L-K

spectral measure, i.e. a Borel measure on RV\{0} finite outside every
neighbourhood of zero and such that

lz|? M (dz) < oo,
o<ilzli<1
and K is defined by
1.3 Kz — @) 1 — "z, ¥) .
. (,9) T+l

The representation (1.2) is unique and we write g = [m, D, M]
(see [71). '

LEMMA 1.1. An infinitely divisible measure p = [m, D, M) is quasi-
decomposable by a pair (a, A) if and only if aD = ADA* wnd aM = AM.

Proof. The equality u* = Auxd(h) is, in terms of characteristic
functlons, equivalent to the equality

exp{z(a/m m)——(aDa: )+ f K (z, y)(aM)(dy)}

RN\ (0}
—expli(m', o) — - (4DA"w, 5)+ [ K(w,9)(4M0)(3)]
RN\ (0}

which, a__ccérding to the uniqueness of the L-K representation, is equivalent
to aD = ADA* and aM = AM. Thus the proof is complete.

Let H be a real finite-dimensional Hilbert space, and A a non-singular
linear operator acting in H such that ||4| < 1. For an arbitrary z € H,
x # 0, we have

A" 2| < |A®X| for m» =0,41,...
Let us denote by Z, the set of the form
(1.4) Z,={weH: |g|<1}n{weH: |4 2| > 1}.

If |z = 1, then x € Z, because of the inequality ||4™* z| > 1.. Thus
Z, #9. For vxeH,z #0, put

17, = {A"r: n = 0,41, ...}.
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Of course, 7, = 7, if and only if y = A"z for some integer k.

LEMMA 1.2. If »,yeZ, and © # y, then v, # 1, and Ax ¢ Z , for
n =41, +2,...

Proof. Let zeZ,. From the inequality [z| = |[A™'(4a)|<1 it
follows that Ax ¢ Z,. For an arbitrary positive integer » > 1 we have

1A~ (Ao = 14" 2l < [l < 1,

which means that A"z ¢Z .
For n < —1 we have

A" 2] = 1A (A" a)l| > 14" el > 1A 2l > 1.

Of course, A™'z ¢ Z , because ||[A~'z| > 1. Thus A*z ¢ Z , for an arbi-
trary integer n 0.

Now, if z,yeZ,, then A"z =y only for » = 0, i.e. # = y, which
completes the proof.

LEMMA 1.3. For an arbitrary x # 0 there exists an integer n such that
Az eZ,.

Proof. Let us assume « ¢ Z, and let, e.g., |lz|| > 1. The sequence
{l4*z|: ¥ = 0,1,...} tends monotonically to zero. Thus there exists
an » such that ||[A®z|| <1 and [|A" 'z| > 1, which means that A®»eZ,.
Now, for |[A™'z||<1 we consider the sequence {|A~*z|: ¥k =0,1,...}
tending monotonically to infinity and we obtain again A"z eZ, for
some 7.

From Lemmas 1.2 and 1.3 we get the following

CorROLLARY 1.1. We have

H\{0} = | A"Z, and A"Z,nA™Z, =@ for n #m.

N =—00

THEOREM 1.2. Let A be a non-singular linear operator in H such that
lAl <1 and SpA < {|z]*< a} for some 0 <a<1l. A measure M iz an
L-K speciral measure in H\ {0} satisfying the equality aM = AM if and
only of M 18 of the form
(1.5) M(E) = ) a"»w(4"EnZ,), EeB(H\{}),

n=—0

where v 18 a finite Borel measwre on Z ,. Moreover, the supports of M and
v are connecled by the equality

(1.6) 8y = U A8,
n=—o00
Proof. Let M be an L-K spectral measure satisfying aM = A M.
By iterating we obtain

(1.7) a"M =A"M for n =0, 41, +2,...
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For any Borel set £ < H\{0} we have

M(E) - M( Q (EnA~"2Z.))

= D (A"M)(A"EnZ,) = D a*v(4A"EnZ,),
n=—00 No=—00
where v = M|Z,.
Now, let » be a finite Borel measure on Z,. We define the measure
M by (1.6). It is easily seen that M is finite outside neighbourhoods of
zero and satisfies the equality aM = A M. Moreover,

ol M(da)= D' [ Il M(da)
o<lizli<1 n=0 4nz ,

= D [a" |4 2| M (dz)

n=02Z,

< [ Il M(da) D) I4"Fa™" < oo.
24

n=0

The last inequality follows from the fact that

lm :/W _ [r(4))

n—>oo a

<1,

where r(4) is the spectral radius of A. Thus M is an L-K spectral measure.
Now, let us assume that M and » are connected by (1.5). Let
zoe |J A™S,and V be an arbitrary neighbourhood of =, open in H\ {0}.

f=—00

There exists an n, such that A"z e §,. Thus A"V NnZ 4+ 18 a neighbourhood
of A"z, open in Z_,, which means that »(4™VNZ,) > 0. Consequently,
M(V)> 0, and 8o &, € 8y,. Since the set | J A"8, is of M-full measure,

fim= —00

we get the inclusion

U 4"8, <8, = U 48,
n=-—00 = —00
which proves (1.6).
Now we prove a theorem characterizing quasi-decomposable measures.
THEOREM 1.3. ¢ i8 a characteristic function of a quasi-decomposable
probability measure on RY if and only if

(1.8) ¢(x) = exp {i(m, w)——;- (De, )+ 5: a~" f K(z, A"y)"(d!l)}.

N=—00 ZAnx
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where m € RY and the following conditions are fulfilled:
(i) A 48 a non-singular Unear operator on RN such that ||A| < 1;
(i) X is an A-invariant subspace of RN such that Sp A | X < {jz|*< a}
for some a (0 < a< 1);
(iii) D is non-negative on RY and satisfies the equality aD = ADA*,;
(iv) v i8 a finite Borel measure on Z ,NX, where

Z,={zeRY: |z|<1}n{zeR": |[A~ 2> 1}.

Moreover, ¢ determines m, D, and v uniquely.

Proof. Sufficiency. Assume ¢ is of the form (1.8) and conditions
(i)-(iv) are fulfilled. Let us define the measure M on X by (1.5). According
to Theorem 1.2, M is an L-K spectral measure on X and (1.8) can be rewrit-
ten in the form '

1 .
p(@) = explitm, 2)— - Do, o)+ [ K(s,9) M(d),
X\ {0}

which means that ¢ is a characteristic function of some infinitely divisible
‘measure g having its L-K spectral measure concentrated on the subspace
X. By the equalities aD = ADA* and aM = AM from Lemma 1.1, u is
quasi-decomposable. '

Necessity. Let us assume ¢ is ‘a characteristic function of some
measure x4 which is quasi-decomposable by the pair (a, 4), where, accord-
ing to Remark 1.1, we can take ||[A||< 1, If g =-[m, D, M], then from
Lemma 1.1 we infer that aM = AM and aD = ADA* and from Lemma 4
in [4] it follows that M is concentrated on an A-invariant subspace
X of RY such that SpA|X < {|2< a}. By Theorem 1.2, M has the
representation (1.5) and, consequently,

1
v(@)= explitm, a) 5 Dz, a)+ [ (@, y) M(ay)|
X\{0}

- exp{i(m,w)—%(l)w,w)-{— S a ™ f K(w,A“y)v(dy)},

n=—oco ZynX

which proves the mnecessity.

‘The uniqueness of the representation (1.8) follows from the uniqueness
of ‘the L-K representation. As a consequence we obtain the following
characterization of full operator semi-stable measures:

THEOREM 1.4. ¢ i8 a characteristic function of a full operator semi-
stable measure on RY if and only if ¢ is of the form (1.8) and condi-
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tione (i)-(iii) of Theorem 1.3 and the following conditions are satisfied:
(iv’) » 48 a finite Borel measure on Z ;,NX such that

dim |J A™S8, = dimX;
n=-—00

(V) there exists an A-invariant subspace Y of RY such that RY = XQ@Y,
DY =Y, and D|Y is non-singular on Y.

Moreover, ¢ determines m, D, and v uniquely.

Proof. Necessity. Assume u = [m, D, M] is a full operator semi-
stable measure on RY . From Theorem 1.1 it follows that u is quasi-decom-
posable, thus u is of the form (1.8), where conditions (i)-(iii) are fulfilled
and u4 = ux+*uy. The fullness of uy on Y implies condition (v) and the
fullness of ux on.X implies; according to (1.6), condition (iv’).

Sufficiency. Now assume ¢ is of the form (1.8) and (i)- (m), (iv"), (v)
are fulfilled. From Theorem 1.3 it follows that ¢ is a characteristic function
of some quasi-decomposable measure u = [m, D, M] which, according
to Remark 1.2, is operator semi-stable. Condmon (v) means that the
mea.sure py defined by

. 1 , :
py(®) =explz(my,w)—? (Da:,w)}, m =mx+my, myeX,myel,

is full on Y. Condition (iv’) means that M is not concentrated on any proper
subspace of X. Defining the measure uy by
ix(@) = expli(mz, 2)+ [ K(o,y) M(dy)}, =eX,
X\{0}

we can eagsily verify that ux is full on X and p = px*uy is full on XY
= RV, (Here we regard uy and Py 38 defined on RY.) The uniqueness
follows from the uniqueness of the L-K representation.

In the one-dimensional case we get the following representation of
a characterlstlc functlon of a semi-stable measure.

COROLLARY 1.2. ¢ is a characteristic function of a semi-stable MEGSUTE
on R if and only if either

1
p(l) = exp {itm _ry o-ztz}
or

¢(t) = exp {itm—l— 2 a”

. b x
(exp {itd"x} —1 — 1T i7s 2) v(dw }
n=—oo b<lzist
where 0 < a<1l, 0<b<a, and v i8 a finite Borel measure on the set

fr:b< |zl <1}
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2. Density of a full operator semi-stable measure on R¥. Let u be
a full operator semi-stable measure on RM and let, by Theorem 1.1,
u= pux*uy be a decomposition of x4 into full Poissonian and Gaussian
measures. After simple computations we obtain

p(2) = l}x(zx)ﬁr(zr) )

where zy and 2, are the orthogonal projections of z onto X and Y, respec-
tively. Since every element z € RV is uniquely determined by its projec-
tions, we can regard R" as the Cartesian product RY = X x ¥ and write
2z = (2x, ?y). Now let vy and », be Lebesgue measures on X and Y, re-
spectively. Let # = v, X»p be the product of the two measures. » is a Borel
measure on RN and for every z = (24, 2y) and a set H = Ex X B, where
Ey and Ey are Borel subsets of X and Y, respectively, we have

;(Ex x By —(2x, zr)) = vx(Bx —2x)vy(By —2y)
= vx(Ex)vy(Ey) = ¥(Ex X Ey),

which means that # is invariant with respect to the group operation in
RY. Thus # is a Haar measure in RV (see [2]) and, consequently, is of
the form # = kv, where » is the Lebesgue measure in RY. Hence

f B (2)v(d2) = k" f |iex (2x)| vx (d2x) f ity (2x)|vy (d2y),
RN X Y

and since uy is the characteristic function of a full Gaussian measure on
Y, 4 is Lebesgue-integrable on RY if and only if 4y is Lebesgue-integrable
on X.

THEOREM 2.1. Let u be a purely Poissonian operator semi-siable measure
full on a finite-dimensional Euclidean space X. Then p is Lebesgue-integrable
on X.

We begin with the basic lemma:

LemMMA 2.1. If u is a purely Poissonian operator semi-stable measure
full on X, then |u(x)| # 1 for x # 0.

Proof. Let us write

(@) = exp{ [ K(z,y) M(dy)}| = exp{—u(a)},
X\ {0}

where the kernel K is defined by (1.3) and
u@) = [ [L—cos(z,y)] M(dy).

X\{0}

The L-K spectral measure M satisfies (1.7) with ||4| < 1. We have
u(x) = 0 if and only if |u(x)] = 1, and let us assume %(z,) = 0 for some
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z, # 0. Hence we get cos(z,,y) =1 for M-almost all y. Let us put

L, = {y: (%y,y) = 2kn} for k =0, +1,... Then the support 8,, of M
satisfies the inclusion

8y < O Ly-

k= —o00

By (1.7), 8, is A-invariant. Consequently, if 2 € §,,, then

(-]
A"z e |J L
k=—o00

for any integer . Since A®z —0 as n — oo, we get |(A™z, z,)| < & for
n > m,y(¢), and taking e sufficiently small we obtain A"z € L, for n > n,(e).
Now, if dimX = r, then there exist x,...,%,€ 8y and x,,...,, are
linearly independent (otherwise, M, and 8o u, would not be full on X).
There exists an m such that A™«; € L, for ¢ = 1, ..., r. The vectors A™g,,
..., A™z_  are linearly independent because A™ is non-singular, which
means that dim L, = r. Since L, is a subspace of X, L, = X, which is
impossible because x, ¢ L,. Thus %(x) = 0 only for # = 0 and our lemma
is proved.

Proof of Theorem 2.1. From the properties of M we obtain the
following equality for the function %:

(2.1) u(A*z) = au(x).
Iterating (2.1) we get
u(A*™z) = a®u(x) for m =0, +1,...

Let A be an arbitrary eigenvalue of A. Then there exists an m such
that

(2.2) A< [Al<a, oM< |l '<a™ 1ieSpd,

and since SpA* = {1: 1 e 8p A}, inequalities (2.2) are valid for the eigen-
values of A*. By the equality Sp(A4*)=! = {A7': 1 e SpA*} we get r((4*))
< a~™, where 7((A¥)™') is the spectral radius of A* ~'. Let Z,. be the set
defined by (1.4) but for A* instead of A and for X instead of H. The
function « is continuous and %(x) # 0 for # € Z,.. Thus

inf u(x)>0

GEZA.

and, consequently, there exists a k> 0 such that wu(z)> k|a|'™ for
x € Z 4+. Since

im (4P = {4 < 0,
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we obtain [|(4*)""|| < a~™" for n > n,. Thus for n >n, and v eZ,. we
have
u((A*) ™) = a""u(z) > a koM™ = k(e lall)/™ > k(A% 2™,

The last inequality means that

(2.3) w(@) = klz|'™ for ze |J (4% "Z,..

n=ng

o
Certainly, the set | J (A4*)~™Z,. is bounded, so it is contained in

N =-—00

some ball {r: |z| < 8} and, for the 2’s lying outside the ball inequal-
ity (2.3) holds. Thus we obtain the estimation

- 1 for ||l < 8
(2.4) u(z) < { exp{_k"w"l/m} for |z > s,
from which we infer that z is Lebesgue-integrable. Thus the proof is
complete.

It is well known (see, e.g., [1]) that the integrability of & implies
the existence of the density of u. Thus we have |

THEOREM 2.2. A full operator semi-stable measure on RY has a density.

Estimation (2.4) implies the following remark due to Professor C. Ryll-
Nardzewski:

Remark 2.1. The density of a full operator semi-stable measure on
RY i3 of the class C* and all its derivatives are bounded.

In [8] Sharpe considered full operator stable measures. From the
fact that every full operator stable measure is semi-stable we infer the
following

COROLLARY 2.1. A full operator stable measure on RN has a density
which i8 of the class O and all its derivatives are bounded.

3. Absolute moments of an operator semi-stable measure. Lct u
= [m, D, M] be an infinitely divisible measure on RY and e a non-zero
vector in RY. Define a random variable £ on R by &(x) = («, e).

LEMMA 3.1. The induced measure p, on the line is infinitely divisible
with the L-K spectral measure M., where M (E) = M (£ 'E).

The lemma is a consequence of the equality u(f) = u(te).

The following lemma is a generalization of the one-dimensional case
from [6].

LEmMMA 3.2. Let u = [m, D, M] be an infinitely divisible measure
on RY. Then

[ Izl u(do) < oo
RN
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if and only if
[ lzl* M (do) < oo.
llzll>1

Proof. Let {¢,, ..., 6y} be an orthonormal basis in R¥. For the sake
of simplicity we put

N
loll = D I(, el

By the inequalities
(3.1) ai+ ... +ay < (a4 ... +ay) < N Ya$+ ... +a%), a=1,
NeYaf 4+ ... +a}) < (8,4 ... +ay)*<al +... +a}y, 0<a<l,

for a;,...,ay >0,
the integral [ |k||®u(dw) is finite if and only if for every ¢ =1, ..., N the
RN ‘

integral f |(x, ¢)|" u(dx) is finite, which is equivalent to the condition
RN h

J ul® gy (du) < co.
R

By Lemma 3.1 and [6] the last inequality holds if and only if for
every ¢ =1, ..., N the integral [ |u|°M,(du) is finite, that is, if all
the integrals lul>1

[(®,¢)”M(dx) for¢=1,...,N

{z:l(z,e5)|>1}

are finite. Because of the inclusions
N
{o: Izl > N} < }Jl{m (@, €) > 1} = {a: ol > 1}

and the finiteness of M outside neighbourhoods of zero this fact is equiva-
lent to the finiteness of the integral [ |«|* M (dz), which completes the
pl'OOf ) flzli>1

Let u be a full operator semi-stable measure on RYM. According to
Theorem 1.1, u is quasi-decomposable by some pair (¢, B). Let us define
a number 8 by ¢ = |Ay,|%°, where A, is the eigenvalue of B having the
smallest absolute value. Then we have

THEOREM 3.1. The measure pu has absolute moments of order a for a < é
and has no absolute moments of order a for a > 4.
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Proof. Let us introduce, as in Remark 1.1, the number a, the operator
A, and define the set Z, by (1.4). We have

o0

lel*M (o) = D' [ Il M (do) = Z“ an "M (dz).

llzli>1 n=14-"Z 4 n=1

Now we consider A~' a8 an operator acting in the N-dimensional
complex Euclidean space CV being a natural extension of R". By the Jor-
dan theorem on the canonical representation (see [3]) there exist a basis
{f1y -++y fn} in C¥, a system of integers 0 =n,< M, < ...<m, = N, and
a sequence of eigenvalues 0,, ..., 0, of A~! indexed so that

A—lf‘ = ajf't +fi+l for ”j—l < % < 'nrj,

A7, =0, forj=1,..,k
Let us establish in R the norm putting

N N
lizlll = D) 1B(@)  for @ = D Bi(a)f-

l==1 ]l

After some computations we obtain
kE ®—nj-1 1

a=rai = 3 3| 3(7) 67| 16ny_ @)
j=1 I=1 r=0
Of course,
[ lwl M (@) < oo
llzll>1
if and only if

[ el M (de) < oo,

llzll>1

which, by (3.1), is equivalent to the condition

oo k "j—"j—1 1

@2 Yad ) 2(’:) il

n=1 J=1 =1 r=0
k B—N-1 o
22 2,.'0'"«2’();-'
=] =1 =] r=0

Now, let 0 be the eigenvalue of A~! having the greatest absolute
value. If

f 1By _y41(2)|" M (da)

Buy._,+1(@) [ M (d) < co.
Zy4

[] ]o—l ]

[ 1Bay,_ (@M (@) =0 for every =1, ..., m,—
Z4
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then
M({weZ,: ﬁnjo—ﬁl(‘”) =0,1=1,..., "’fo_"'fo—l}) = M(Z,),
and by virtue of the A~-invariancy of the subspace
= {reR": ﬁnjo_l_,_,(w) =0,1=1,...,m, —n _}

the measure M would be concentrated on X’. Since ux, and so M, is full
on X by Theorem 1.1, we have X < X',
The relation 6; eSpA 1| X implies f,,j eX < X', where X and X’

denote complex extensmns of X and X', respectlvely But f,, ¢ X' by

the definition of X', from which it follows that for at least one [
(l == 1, ceey njo—njo_l)

[ 1Buy, _s2(@)1 M (d) > 0.
Z4

Thus the left-hand side of (3.2) is finite if and only if &]6,|* < 1.
In other words, a/|4;|* <1, where 4, is the eigenvalue of A having the
smallest absolute value. The last inequality is equivalent to ¢/|Ay,|* < 1,
which proves our theorem.

Applying this result to full operator stable measures having the re-
presentation

(3.3) p =1tBuxd(h) for t>0
(see [8]) we obtain

COROLLARY 3.1. A full operator stable measure u on R™ has absolute
moments of order a for a < 3 and has no absolute moments of order a for
a > 0, where § = 1[Rely,, and Ay, 18 the eigenvalue of B from (3.3) having
the greatest real part.
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