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Let G be a locally compact group and let G denote the dual object
of G, that is, the set of equivalence classes of irreducible unitary repre-
sentations, equipped with the usual topology. Assume that G is unimodu-
lar and separable. If, moreover, @G is a type I group (or equivalently: the
topology of @ is T,), then the Plancherel theorem, due to Mautner and
Segal ([1], 18.8.2), says that there exists a unique positive (o-additive)

measure x on @ such that, for all fe L'(Q)nIL*(@),
(1) [1f@ptde = [ Tr(=(f)*=(f)dp (=),
G @

Tr being the trace of operators in the Hilbert space s, corresponding
to =.

In practice, for a specific G it can be a very delicate problem to find
p explicitly (in terms of the group structure) and for many groups it
is not yet done.

For groups which are not of type I, the situation is much more difficult
and less investigated. An analogue of the Plancherel theorem need not
be true. Such a measure need not exist (in my opinion, the discrete Heisen-
berg group is an example) or may not be unique. The difficulties appear
already in the description of the space a.

In this paper we give a simple construction of a finitely additive
Plancherel measure x on the dual object G of the discrete Heisenberg
group such that all representations in the support of x are of finite dimen-
sion and so have very simple form. This may allow us to use formula
(1) in practice. ,

The group G of all matrices

1 n, n,
0 1 n,i,
0 0 1
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where n,, n, and n,; are integers, is called the discrete Heisenberg group.
It is isomorphic to the set Z°, Z being the integers, with the multiplication
law defined by the formula

nm = (n,4+my, ng+mg, ng+my+n,m;), n,meZ

THEOREM. Let G denote the discreie Heisenberg group. There evists

a positive, finitely additive measure u on G, supported by the set of fimite-

-dimensional representations of @, such that for every f e I'(@) the function
1

dimz

Tr(z(f)* =(f))

T —>

18 u-integradble on @ and

1
DI = [ g Tr(a(f) () du ().
ne@ é

Let @ denote the set of all rational numbers in the interval [0, 1),
and let X be the space [0, 1) X [0, 1) X @ equipped with the natural topology
from R®. Let .# denote the field of subsets in X, generated by all “rectangles”
[y by) X [@gy bs) X ([as, bs) NQ), Where ay, b, (¢ = 1, 2, 3) are arbitrary ration-
al numbers satisfying 0 < a; < b; < 1. It is easy to see that every element
in the field 4 has a unique representation as a finite sum of pairwise
disjoint rectangles. Thus there is a positive, finitely additive measure
m on # which takes the value (b, —a,)(b;—a,)(b;—a;) on the rectangle

[@yy 1) X [a@gy bs) X ([aay bs)“Q)*
LeMMA 1. Let f be a uniformly continuous, complex-valued function
on X. Define a function F, on X by

g—-1 g—1

1 r,+k 2,4+m
Ff(wnwz,wa)='q—,22f( lq ’ 2q ,wa)

k=0 m=0

if , = p/q with p and q relatively prime natural numbers. Then the function
F, is m-integrable on X and

f Fydm = f f ’
b ¢ [0,113
where f is the unique extension of f to a continuous function on [0, 1] and
the right-hand side of the last equality is the usual Riemann integral of f
on [0,17.
The proof of the lemma can be easily obtained from the following
three observations.
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(I) A complex-valued bounded function g on X i8 m-integrable on X
if and only if it can be extended to a Riemann integrable function § on [0, 1%
In this case
f gdm = f g.
X [0,113
Indeed, suppose that the function g is m-integrable. We may assume
that g is real-valued. In any point z, € [0, 1]*— X let us define §(z,) = a
with
limg(e) < o < limg(a).
) )
Then for every partition 2 of [0, 1] the upper and lower integral
sums of § coincide with the corresponding integral sums of g on X with
respect to the measure m. This implies that the funetion g is integrable and

f g = f gam.
[0,1)3 X

The converse implication is trivial.

(IT) A bounded function F:[0,17 — C is Riemamn-integrable if
and only if the set of those poinis where F i8 mot continuous has Lebesgue
* measure zero (see [2], Theorem 3.8).

(III) Let us extend F, to a function F, on [0,1)* by putting
Fy(@y, @, 1) = [ [ flty, ta, @)ty dt,
00

if @y 48 irrational. Then F, is continuous in every point of the extension.
Indeed, the integral

fff(wn 3y &3) 41 Ay

is a continuous function of z;. On the other hand, by the definition of
the Riemann integral, for any ¢ > 0 and any rational x; we have

1 a1 g-1
1 z,+k z+m
aff(wn Tay “")d‘”‘d‘”z_g—:zzf( lq ’ sq ’ “f's)

1

/

<e¢

k=0 m=0

for large ¢. In particular, the inequality

iﬁf(“’n Lyy X3) — jjf(wn Tay wa)dwlda"z|> €

holds only for finitely many x,. It follows that I"’, is continuous in every
point (z,, #,, @5) € [0, 1)* with z, irrational.
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For every ® = (@, %4 #;3) in X, with @3 = p/q (p and ¢ relatively
prime), let us define a continuous finite-dimensional representation =,
of the group @, acting on the Hilbert space s, of dimension g (o, will
be realized as a space of all complex, periodic sequences {p(k)},.z With
the period ¢) as follows:

27
(7, () @) (k) = exp 7 (121 + N3 @y + N3 43 + kng gs) @ (K +1y).

The reader can easily verify the following

LeMMA 2. Every representation =, 18 irreducible and, for ©, # x4
in X, representations m, and m, are inequivalent.

Remark. It can be shown that {=, },.xis the class of all finite-dimen-
sional, irreducible, unitary representations of G up to the unitary equi-
valence.

LEMMA 3. Piz an x in X and describe x3 = p[q in lowest terms. Then

or every fel'(@) we have
f(ml+k w,—;—m wa)

where f i8 the usual Fourier transform of f on Z3,

fly) = 23 f(m)e™=»  yefo,1).
neZ

-1 g-1

Tr(”z(f) “z(f) = "‘22

k-o m=0

Proof. Consider the orthonormal basis of 5, consisting of the peri-
odic sequences @g @y, @s) --.y Ps—1) Where g, (m) =1 if m =k (mod g) and
@r(m) = 0 if m # k (mod ¢). An easy calculation shows that the matrix
of the operator = (f) with respect to the above basis has coefficients
(@x,m)im=o Of the form

—Zf(n1q+k —m, na,na)exp——(nlqw1+kw1 —ma, +

nez3
+ Ny B3+ Ny MATy + Ny §Ts) -
Furthermore,
g—-1 g-1
Tr (7, (f)* 7o(f) = D) D) |t ml-
k=0 m=0

One can show that for any integer s there is

q-1

2 ak.mexp2m—— =f (

k=0

y +8 Xy
q

— + kax,, %)



which, by the formula

g-1, g-1

2|

8=m0 k=0

gives the desired equality

T, () () = 2 2 Gam* = —2 2 (o™ ""”
k=0 m=0. =0 m=0

Proof of the Theorem. By Lemma 2 the map X3 2 »>n,e@
is an injection of X into &, and so it transposes the measure m into a posi-
tive measure (say) u on &. Suppose now that f is in I'(@). Then, by Lem-
mas 3 and 1.

1 . 1 .
@f T Tr () () da(m) = xf T, ) me(f)) dm ()

= [Frn@ame) = [ Ifi
X

[0,1)3

By the Parseval formula the last integral is equal to
Z |f(m)?,
nezd

and the Theorem follows.

REFERENOES

[11] J. Dixmier, Les O*-algdbres et leurs réprésentations, Paris 1969.
[2] M. Spivak, Oaloulus on manifolds, Mathematics monograph series, 1965.

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES
INSTITUTE OF MATHEMATICS, WROCLAW UNIVERSITY

Regu par la Rédaction le 3. 6. 1978



