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We shall prove that for each homogeneous Polish space there exists a
continuous one-to-one map onto a compact metric space.

In “The Scottish Book” edited by R. Daniel Mauldin in 1981, the reader
can find the following problem posed by Banach on July 17, 1935:

(a) When can a metric space [possibly of type (B)] be so metrized that it
will become compact and so that all the sequences converging originally
should also converge in the new metric?

(b) Can, e.g., the space ¢, be so metrized?

The problem was also published in Colloquium Mathematicum 1 (1947),
p. 150. The part (a) can be formulated equivalently:

When can a metric space have a continuous one-to-one map onto a
compact metric space?

We say that a metric space X has a contraction to a compact metric
space Y iff there exists a continuous one-to-one map f: X »Y onto a
compact metric space Y.

We shall show that each locally compact separable metric space has a
contraction to a compact metric space. Also each Cartesian product of
countably many spaces which have contractions to compact metric spaces
has that property. In particular, the space w® of irrational numbers and the
countable infinite product R® of lines have the property.

The first mathematicians to attack the Banach problem were Sikorski
[9] and Katé&tov [2]. Sikorski proved that:

If |F,: new) is a sequence of mutually disjoint closed subsets of a
compact metric space Z such that §(F,) =0, then the space

o

X=2Z\UF,

has a contraction to a compact metric space.
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Katétov solved the Banach problem for countable spaces. He proved
that:

A countable regular space has a contraction to a compact metric space
iff it is scattered (i.e., every nonempty subset has an isolated point; for
countable metric spaces this is equivalent to the condition that the space
does not contain a topological copy of the rational numbers).

It is known that the answer is “yes” to part (b) of the Banach problem
and, in general, for Banach spaces. It follows from the famous Anderson-
Kadec Theorem (see [1]):

All separable infinite-dimensional Fréchet spaces are homeomorphic
to R“.

In his commentary, Mauldin writes ([7], p. 65) that part (a) of the
Banach problem seems to be unsolved. He suggests the following restriction
of the problem:

Let X be a Polish space (i.c, a complete separable metric space). Are
there some simple conditions such that there is a continuous one-to-one map
of X onto a compact metric space?

In [4] the author pointed out that there exists a 1-dimensional Polish
space which does not have any contraction to a compact metric space and
he proved that:

Each 0-dimensional complete metric space has a continuous one-to-one
map onto a compact Hausdorff space.

From the above it follows that:

Each 0-dimensional Polish space has a contraction to a compact metric
space.

Independently of Banach, a similar problem was raised by Russian
mathematicians: They asked:

What kinds of spaces have continuous one-to-one maps onto Hausdorff
compact spaces?

In 1939 Parkhomenko proved that if D is a countable subset of a
compact metric space X, then the space X\D has a continuous one-to-one
map onto a Hausdorff compact space. The result is valid for dyadic spaces
(Belugin) and not valid for fw\w (Ponomarev). More information about the
Russian problem can be found in Arkhangel'skii’s appendix to the Russian
second edition of Kelley’s book [3].

The result of our note follows easily from [8]. But the aim of the note is
to give a simple solution of the Banach problem using only classical
theorems. '

A space X is said to be homogeneous iff for each pair of points x, ye X
there exists a homeomorphism k such that h(x) = y.

We shall prove:
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THEOREM A. Each homogeneous Polish space has a contraction to a
compact metric space.

The theorem implies immediately

CoroLLARY. If a topological group is a Polish space, then it has a
contraction to a compact metric space.

Let us start with simple observations.
OBSERVATION 1. Let X be a locally compact separable metric space. Then
X has a contraction to a compact metric space Y.

Proof. Let Y be a topological space obtained by introducing a new
topology on the set X in the following way. Choose a point x, € X. Define
aset UcX to be open in Y iff U is open in X and X\U is compact
whenever x,e€U. The space Y obtained in this way is compact and metri-
zable, and the identity map id: X — Y, id(x) = x, is continuous.

CoOROLLARY. If
[« o]
X =] x.
n=0

is a product of countably many locally compact separable metric spaces, then X
has a contraction to a compact metric space.

Proof. Let f,: X, =Y, be a continuous one-to-one map onto a com-
pact metric space Y,, new. Then the map

S X.~ 1] Y
n=0 n=0
S (X0, X1, X2, ...) i = {fo(x0), f1(x1), f2(x2), ..>

is continuous, one-to-one and onto.
A space X is o-compact iff it is a union of countably many compact sets.

OBSERVATION 2. If X is a homogeneous Polish space, then X is locally
compact or X is non g-compact.

Proof. Assume that X is g-compact,
[ o]

X=0UF,
n=0

where F, is a compact subset of X. According to the Baire Theorem there is
an new such that int F, # @. But this and homogeneity imply that X is
locally compact.

In view of the above remarks, Theorem A will be a consequence of the
following
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THeorem B. Each non g-compact Polish space has a continuous one-to-
one map onto the product R® of countably many lines.

Theorem B is valid when we put I¢, I = [0, 1], instead of R®, but with
R® the theorem seems to look better because the assumption “X is not o-
compact” is necessary for the case R“ (because R“ is not g-compact).

Now we prove the main result of this note. The idea of the proofs is
taken from [8]. Fix some notation. For each mew let us put

C,, = R® x R®(m),
where

R®(m) = |(xq, X1, X3, ..) ER®: x, # m for finitely many new),

R‘D=I—[Ri, R(DXR“,:nR,xXl_[R,z, R,'=R?=R,
= i=0 i=0

i=0 i
and: let
n;: R® -R;, =nf: R°>xR®° —R}

mean the projections.

LeMMa. For a given mew and for every continuous one-to-one map f: M
- R® xR*\ C,, from a closed subspace M of a metric separable space X, there
exists a continuous one-to-one extension f*: X = R® x R® of the map f such
that f*(X\M) c C,,.

Proof. The set X\ M, being open, is an F,-set. So let

X\M= U Mj,
i=0

where M; is a closed subset of X and M; = M;,, for each jew. Choose an
embedding h: X — R” such that for each new the set liew: n;h =mn;h) is
infinite. Define continuous maps fj': M U M; - Rj by '

i f(x) if xeM, a=1,2,
ff(x)=<njh(x) if xeM;, a =1,
m if xeM;, a =2.

Let (ff)*: X — Rj be a continuous extension of the map f;*. The map f*: X
— R® x R®, defined by =} f* = (ff)*, is an extension of the map f. To see that
S*(X\M) c C, let us observe that if x € X\ M, then there is an new such
that xeM; for each i > n. Consequently, n? f*(x) = m for each i > n, ie.,
f*(x)eC,,. In order to show that f* is one-to-one it suffices to verify that
S*|X\M is one-to-one, because we know that f*|M = f is one-to-one and
f*(M) N f*(X\M) = Q. Notice that if x, yeX\M and x # y, then there
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exists i ew such that x, yeM,; and m; h(x) # n; h(y). But then

m f*(x) = m h(x) # m h(y) = ! f*().

In the proof of the final result we need some knowledge about Borel
sets. A metric space is said to be a Borel space (in accepted terminology: an
absolutely Borel set) iff it is homeomorphic to a Borel set of a Polish space.
The following facts will be useful:

1. If X is a Borel space and non e-compact, then there exists a closed
subset P — X homeomorphic to the space of irrational numbers (Hurewicz;
for the proof see van Douwen’s article in [5]).

2. A continuous one-to-one image of a Borel space is a Borel space
(Suslin; see [6]).

3. Each Borel space is a continuous one-to-one image of a closed
subspace of the space of irrational numbers (Lusin; see [6]).

THeorem C. Let X be a non a-compact Borel space, P = X be a closed
subspace homeomorphic to the space of irrational numbers, and let

h: X = R” xR*(0)

be an embedding. Then for each open set U < X such that P — U there exists
a continuous one-to-one and onto map f: X = R® x R® such that

fI1X\U =h|X\U.
Proof. We may assume that

P= UP,',
i=1

where P, " P; = @, i # j, and each set P; is a closed subset of P homeomor-
phic to P. Put P, = X\ U. Choose a locally finite closed covering F;: i ew!
of X such that
P, cF,\UF; for each icw.
j#i
For example, let

Fi=(@g% '[i-4,i+1],
where g*: X —(—4, o) is a continuous extension of the map
- 1
g. ‘yopi _b(—79 w)9

g(x) =i whenever i€P;.
Let us put
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We have

®
B, < B,4,, B,,y =B,uC,y, U B, =R®xR",

n=0
®

AncAn+1’ UAn=X'
n=0

By induction we define continuous one-to-one maps
fui A, > R° xR®
such that

f;l+l|An=j;| and Bncj;l+l(An+l)CBn+l°

Let fo:= h|Ay = h|Fy, Fo o X\U. Assume that the map f, is defined.
Let f,+y: A,+, = B,+, be a continuous one-to-one extension of a map

.’;l,-i-l: A!IUD!H-I —’Bna
where D,., is a closed subset of P,,, and the map

Jo+1|Dns1 = B\ fo(4,)

is one-to-one and onto (here we apply Suslin and Lusin Theorems and the
Lemma).

Define f: X - R° xR®; f(x):= f,(x) iff xeA,. The map f is

1° continuous, because f|F, = f,|F, is continuous and the family
\F,: new! is locally finite;

2° one-to-one, because the maps are one-to-one and A, < A4,,, lj A,
_ X, n=0

3° onto, because B, < f,.,(A4,+:) and G B, = R® xR“;

# f1X\U = fo| X\U = h| X\U. e

The proof of the theorem is completed.

Since R® xR” is homeomorphic to R“, and taking into account the
theorem of Hurewicz, it is obvious that Theorem C is a generalization of
Theorem B.
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