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THE CURVATURES OF CERTAIN SURFACES OF TRANSLATION

BY

D. KOUTROUFIOTIS axop B. WEGNER (BERLIN)

This note* concerns the curvature diagram of certain complete sur-
faces in the Euclidean 3-space E°. We shall namely prove the following

THEOREM. Let F be a complete C*-surface in E* permitting a global
Cartesian representation z (x, y) = f(x)+g(y). Let », and x, be its principal
curvatures. Then

inf {(» + ) (P)|P € F} = 0.

We note that a surface of the above type is called a surface of trans-
lation (S. Lie), since it can be generated by moving the space curve z(t)
= f(t), z(t) =1t, y(¢) = 0 rigidly and parallel to itself along the space
curve 2(t) = £(0) +g(t), @(t) = 0, y(t) =t

First we prove a lemma of independent interest.

LEMMA. Let p: [a,b) — Rt be a monotonically increasing C'-function
satisfying dy/dx > cy3 for a certain constant ¢ > 0 and w(a) > 0. Then b

18 a finite number and the possibly improper integral f y(x)dx converges
to a finite number.

Proof. Since yp’ > cp® and p is monotonically increasing, we have
v’ (2) > cy®(a) > 0.
Using the mean value theorem we now obtain

p(2) —y(a) = cy*(a) (v —a).

In case where y 18 bounded, we deduce from the last inequalitj;, by
letting « tend to b, that

b< oo and fzp(a:)da:< 00,

* The first-named author was supported by a research fellowship from the
Alexander von Humboldt Foundation.
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Consider next the case in which y tends to infinity if « tends to b.
Now y’ > 0, so that y is strictly increasing. It follows that then there exists
a positive integer n, such that for all integers n > n, the equation y(z) = n
has a unique solution a,. By the mean value theorem again, for a certain
¢, €(a,,a,,,) we have

1 (a' )— (a') ’
= Pl P00 — (6 > oy (6 > ey¥(a,) = on.
al"+l_a’n an+l— n
Thus
m )
1 1
Ay — @ = ano—a-i— Z(an+1_an) < ano_a’_i_;ZF’
n=ng i=1
whence N

A Z

for all integers m > n,. The right-hand side of the last inequality is a finite
number independent of m. Now a,,_, - b a8 m — oo, therefore b < oo.
Furthermore, for all m > n, we have

41 g Ap 41
f wda:=fy;dw+2 f pdo
a a n= no an
Gno
z—i—l
f pdr+ Z'P(anﬂ)(anﬂ a,) f pdo 4 — Z
n= no

This last infinite series is again convergent, therefore

f pdr = lim 7+lwdm< 00,

m-—oo a

since y is monotonically increasing, q.e.d.

Proof of the Theorem. Recall that a surface F is complete if
every rectifiable, divergent ray on it has infinite length; by a divergent ray
we mean a continuous mapping ¢: [a, b) > F with the property that
¢([a, b)) does not lie in any compact subset of F.

Setting f, = df/dx etc. we compute the Gaussian curvature of F and
the mean one,

K(a:, y) = (1 +fi +g12/)—2fa:xgyy7
H@z,y) =31 +fi+0) " [A+fD g+ 1+ g0 ezl



and
1) (6 +x3)(x,y) = 2(2H*—K) (2, y)
= (1 +£f2+0) (A + 2V 05y + 2f294f 290y + (1 + 83) f22)

We now proceed indirectly. Assume that ]+ x; > ¢* > 0 for some
constant ¢ > 0. Let f be defined on the interval (a,b), where a and b
are in RU{—oo, +oo}. From (1) it follows easily that

(2) ¢ < (Ifael + 19y )*

From (2) we infer that either |g,,| > ¢/2 or |f,,| > ¢/2. Indeed, if for
some y, we have |g,,(¥,)| < ¢/2, then for all x € (a, b) we must have |f,,|
> ¢/2, since f does not depend on y. Say, we have |f,.| > ¢/2 throughout.
Performing a reflection, if need, we may assume without loss of general-
ity that f,, > ¢/2 > 0. This implies that f, is strictly increasing. We assert
that f, tends to + oo as # tends to b; if namely b = -+ oo, then

12 @) = fo(@) = furl )@ —2) > 5 (B —a)

for a fixed z, € (a, b) and a certain & between & and z,. Therefore, f,(Z)
— + o0 a8 & — b. If, on the other hand, b < oo, then the assertion follows
from the observation that the divergent ray I,

L={x(t) =t,y(t) = Yo, 2(t) = f(1) +9(¥o) | T <t < b},

-

must have length
b

L) = [Q+f)"de = + oo,

Zo
since F is complete.

Consider a fixed ¥y = y, and set g,(¥,) = ¢1, 19,,(%)| = ¢;. From (1)
we infer that

<A+ IA+2 e+ (L + )P fr+ 261 ¢, 2 2]
Since

for appropriate numbers a, € (a, b) and ¢; > 0 we have

03< fII+Aff: fII___‘
(L+£27" 1+

for all z € [a,, b),

where

A= 2¢tec,
L+
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Now

f2
lim -2 _¢
z—+b (1 +.f:z:)
monotonically, therefore there exist an a, € [a,, b) and a constant ¢, > 0
such that f.(a;) > 0 and ¢, < f,,/f: for all z € [a,, b). The function y = f,

satisfies on [a,, b) all the hypotheses of the previous lemma. Hence b < oo,
and f f.dx exists and is finite. It follows that the divergent ray ! on F,

defmed above for z, = a,, has length

L@ = f(1+fz b—a,+ ff,dw< o0

a2
which contradicts the completeness of I.

Remarks. The Theorem was obtained while investigating the fol-
ilowing conjecture by J. Milnor (cf. [1]):

CONJECTURE. Let F be a complete umbilic-free surface, C*-immersed
in E? with K not vanishing identically and either K > 0 throughout or K < 0
throughout. Then

inf {(x} +»2)(P)|P € F} = 0.

Our theorem verifies this conjecture for a very special class of surfaces.
In fact, this class is so special that none of the hypotheses in the conjec-
ture are needed except, of course, for the completeness. Simple examples
show, however, that all the hypotheses are nccessary in general. Consult [2]
for more details on this as well as recent partial verifications. In this
connection it seems to be of interest that our class of translation surfaces
contains many complete, strictly convex (K > 0), non-compact surfaces
without umbilics. We give some examples:

z2(x,y) = ¢+ ¢ over the whole plane,

2(x,y) = tan’z+y~' over (—=/2, n/2) X (0, o),

z(x,y) =a 'In(cosar)+ b~ 'In(cosby) over the interval (— =/2a, /72a) X
X (—m/2b, 7/2b) for a > 0, b > 0 and a # b.

By Stoker’s structure theorem [3], a complete, non-compact surface ¥
in B* with K > 0 is the boundary of an unbounded convex body B and
it permits a global Cartesian representation z = z(x, y) with 2> 0 over
a convex domain D of the (x, y)-plane. We note, in passing, that if D
contains discs of arbitrarily large radius, then, indeed, the infimum of
%, + 2%} over F is zero. To prove this, take a circle of radius ¢! contained
n D, where ¢ is a given positive number. Consider the sphere with this
circle as equator. Move this sphere upwards in the direction perpendicular
to the (z, y)-plane until it is entirely within the convex body B. Now
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lower it until it first touches the surface F at a point P,. At that point
we have obviously |x,| < eand |»,| < ¢. Since ¢ was arbitrary, the assertion is
proved. Note that we did not have to assume that F has no umbilics.

The authors wish to thank Carlos Berenstein for several fruitful
conversations.
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