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SOME CURVES OF PRESCRIBED RIM-TYPES
BY

B. B. EPPS, Jr. (HOUSTON, TEXAS)

The theory of continua, when studied from the set-theoretical stand-
point, offers a number of concepts in which some cardinality ideas play
an important role (see [2], Section 51). Among them probably most
natural is the concept of a rational curve understood to mean a non-
-degenerate connected compact metric space having a basis of open sets
with countable boundaries. Given a rational curve X, by the rim-type
of X we understand the minimum ordinal a such that X has a basis of
open sets with countable boundaries whose a-th derivatives are empty
(cf. [5], p. 296). The rim-types of rational curves are countable ordinals,
and the arc is an example of a curve of rim-type 1. It is known that each
acyclic rational curve of a finite rim-type contains an are (see [4], Theorem
1.2). Answering a question asked recently by Lelek (see [3], Problem 13),
we show the existence of chainable, thus acyclic, rational curves of any
finite rim-type with the property that each subcurve which is not an
arc has rim-type equal to that of the eurve. The rim-type of a rational
curve X will be denoted by ¢(X), and we shall denote by C(X) the collec-
tion of all subcurves of X.

ExAMPLE 1. For each integer m > 1, there exists a chainable rational
curve X, such that

{e(Y): YeC(X,)} = {1, n}.

Proof. Let T be the Cantor ternary set of real numbers of the unit
interval, and let T* be the subset of T consisting of all right end points
of bounded intervals adjacent to 7. In the other words, we have te T*

if and only if
k 1
t= g0
i=1

where t; = 0, 2 for ¢ < k and {; = 2. For each such a number ¢, we define
three numbers ¢, ¢’ and ¢’/ in the following way.
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We put
’ t‘;
i = —

i=1
where #; = 1, for i < k and t;, = 1, and
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First, we construct a continuum X on the plane, and then we obtain
X, as the image of X under a monotone mapping. We take the sets

¢ ={1t0): 1T}, JF ={(0,9): <1}
and, for each number te 7% we define five points
a=(0), b=(@1t), e¢=(0,1) d4&=(0), p =(1").

Given a pair of points p, ¢ of the plane, we denote by E the straight
segment joining p and ¢. It is not difficult to see that the set

X =¢ U} V) U (a,tb‘ Ub‘C‘ Uc‘d,)
teT™

is a chainable continuum, irreducible between the point (1, 0) and any
point of the segment #. The rim-type of X is infinite. Observe, however,
that each segment a,p, (¢ T*) can be represented as the intersection of
a decreasing sequence of open subsets of X with countable boundaries
whose n-th derivatives are empty.

Indeed, given a number te T*, open subsets G;(t) of X having these
properties can be defined by the formula

Gj(t) = {(.’L‘, y)é X: t—Ej<w<t+£j’ —'Ej<y< t"'-—l—sj},

where ¢ = 277(t—1') =27737% for j =1,2,...

Let D be the upper semi-continuous decomposition of X into continua
such that the only non-degenerate elements of D are J# and a,p;, where
te T*. We define X, to be the decomposition space X, = X/D. Thus
X,, as a monotone continuous image of X, is also a chainable continuum
(see [1], p. 47), irreducible between exactly one pair of points corresponding
to (1, 0) and (0, 0), respectively. Moreover, the above-mentioned obser-
vation implies that the rim-type of X, is now finite and equal to .

Consider a curve Ye C(X,) and assume Y is not an arc. Then, taking
the inverse image Y’ of Y in X, we can see Y  is not contained in any

of the arcs # and a;b, U b, U ¢;d; (te T*). But a continuum contained
in X and not contained in any of these arcs has to join a pair of points
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of C which are not end points of intervals adjacent to C. The portion of
X lying between such a pair of points is very much like the curve X itself
and, by the irreducibility of X, it is contained in each continuum
joining these points in X. Consequently, Y' contains a topological copy
of X. It follows that Y contains a topological copy of X,,, whence ¢(Y) = n
and the discussion of Example 1 is completed.

Now, denoting by o the least infinite ordinal, let us introduce the
order topology in the set of all ordinals a < w. This is the space {1,2, ...} U
U {w} being the one-point compactification of the discrete space {1, 2, ...}.

ExamMpLE 2. For each closed subset N of the space {1,2,...} U {w}
with 1 N, there exists a chainable rational curve X , such that

{e(Y): Ye €(Xy)} =N.

Proof. We distinguish three cases, though case (ii) includes case (i)

(i) If N = {1, o}, then let X, be the curve X of infinite rim-type
as defined in Example 1. Each subcurve of X either is an arc or has rim-
-type w. In addition, for the purpose of case (ii), let us also denote the
same curve X by X, and let us select the points (1, 0) and (0, 0) between
which X, is irreducible.

(ii) If ¥ is finite, then we have N = {n,, ..., n;}, where n, are positive
integers or w. Let X; be an arc, let X,, be the curve constructed in Example
1 for any integer » > 1, and let X, be the curve from case (i). Each of
these curves is irreducible between a selected pair of points. We define
Xy to be the union of topological copies of the curves X,, ,..., X, joined
together like a chain at points corresponding to the above-gselected points
of irreducibility.

(iii) If N is infinite, then we have N = {n;,n,,...} U {0}, where
1 =n;,<m,<... are integers. Similarly to what was done in case (ii),
we define X, to be the union of an infinite chain of topological copies
of the curves X, , X, ,... plus a point ¢ such that ¢ does not belong
to any of these copies and they are required to converge to ¢.
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