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THE BOURBAKI INTEGRAL AS MAXIMAL INTEGRAL
BY

FRANK TERPE (GREIFSWALD)

1. Introduction. A theory of maximal embedded absolutely con-
vergent integral was developed in [5]-[8] and [10]. The present paper,
which is a continuation of [6], contains also chapter 2 of the unpublished
paper [8] and gives the proof of theorem 4 of [11].

Let the pair (I, W) consist of a o-vector-lattice M and a condi-
tionally complete half-ordered vector space 2, and let B be a subvector-
-lattice of IN. ‘

B is called embedded (= eingelagert [6]) in I iff for every 0 < f
e M — B there exists a sequence 0 < v, < v, <...<f,,¢B (¢ =1,2,...),
such that supv;e M — V.

A linear, positive, continuous mapping I: 8 —W is called an abso-
lutely convergent integral I|/B embedded in the pair (M, W). Such an integral
is said to be maximal iff there exists for any vector-space R with the
property B < R = M either no linear, positive and continuous extension
of 7: B—>W to R or more than one such an extension. Continuity of I
means that the implication B>v;| 0 => I(v;) | 0 is valid.

Now let 2 be a locally compact space, € the vector-lattice of real
continuous functions e: 2 — R with compact support. R is the set of
real numbers (without + oo). The support of a function e is the closure
of the set {z; e 2 and e(x) # 0}. A linear and positive functional £: € > R
is called a Bourbaki elementary integral E|E or a positive Radon measure.
For every non-negative and lower-continuous function s: 2 >R U
U{+ o0, — oo} there is defined the number

E(8): = sup{E(e); 0 < e<s,ecC}.
For any numerical function f: 2 > R U {+ 00, — o0},
Ng(f): = inf{E(s); |f| < s and s lower-continuous on 2}

is called the semi-norm of f. Let 5 be the set of numerical functions f:

Q- Ry {+o00, —oo} having a finite semi-norm Ny (f). The closure Sy
of € in §; with regard to Ny is called the set of integrable numerical func-
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tions on £ relative to F /€. The integral I,(f), where f eéE, is obtained
by continuous extension of the mapping E. Let S, denote the set of
integrable real functions f: £ — R. The pair I,/Sy is called a Bourbaki
integral relative to E[E. Finally, let 9tz denote the o-vector-lattice of
measurable real functions on 2 relative to E/E, A, the o-field of measu-
rable subsets of Q2 relative to E/E, and m, the measure belonging to £/E.

The main problem of our paper is to characterize those elementary
Bourbaki integrals E/E for which the Bourbaki integral I,/Sy is a maxi-
mal absolutely convergent integral embedded in the pair (M, R). With
such a characterisation in hand we are in a position to decide already at
the level E/E of the extension-procedure E /¢ — I,/S,, whether the result
of this procedure will be maximal or not.

The problem is solved by theorems 1-4 asserting the equivalence
of conditions III-VIII. Conditions I-IV are auxiliary ones and serve
to get the equivalence of condition V and the maximality of I5/Sg (condi-
tion VI). An essential part (conditions IT and IV) lies in the use of the
notion of a local mg-nullset. We characterize, by means of E/E, those
measures myg for which every local myg-nullset is an my-nullset (lemma 3).
In the definition of local my-nullsets the compact subsets of 2 play a great
role. In order to use only objects given directly by E/E we introduce
the set L; (definition 1). Then we get condition VII equivalent to the
maximality of I./Sg;. Thereby the constructively defined Bourbaki
integral is arranged in a sufficiently general manner in the framework
of maximal embedded absolutely convergent integral.

2. Characterisation of the Bourbaki integral I,/S, as a maximal
embedded absolutely convergent integral. A set 4 = 2 is known to be
a local mg-nullset if for every point z ¢ 2 there exists a neighbourhood U (x)
of x such that U(x) n A is of mgz-measure zero [1].

LEMMA 1. The following conditions are equivalent:

I. Let A Ny and my(A) = + oo.

Then > B < A implies mg(B) = 0 or mg(B) = + oc.

I1. A is a local mg-nullset but not a mg-nullset.

Proof. I = II. Let z¢£. Then there exists a compact neighbourhood
U(x) of x. Since my(U(x)) < + oo, there is myz(A N U(z)) < + oo and
condition I implies mgz(4 N U(x)) = 0. So A is a local mg-nullset. Because
of my(A) = + o0, A is not of mg-measure zero.

IT = I. Assume II. By virtue of [1] (cf. remark after definition 2 and
Corollaire 1, p. 183), we have 4 ¢ Ay and mgz(A4) = 4 oco. Let Ax> B < A.
Since mgz(B) = + oo implies I immediately, consider the case mg(B)
< +oco. We have to show that mz(B) = 0. Since B is a subset of a local
my-nullset, B also is a local my-nullset. Therefore, by [1] (cf. Corollaire 1,
p. 183), B is an mg-nullset.
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LeMMA 2. The following conditions are equivalent:
IITI. The measure my ts weakly o-finite, i.e. for every mg-measurable
set B with mg(B) = + oo there exists a sequence B, < B, < ...< B of

mg-measurable sets B; of finite measure such that mg () B;) = + oc.
@

1V. Every local mg-nullset is an my-nullset.
Proof. Use Lemma 1 and Theorem 1 of [9]. See also [12].

LeMMA 3. Condition IV is equivalent to the condition:

V. Let A < Q. If for every compact set K = 2 and every number ¢ > 0
there exists a sequence 0 < e®) <)< ..., eFeE, (1 =1,2,...), such
that x,.x <supel) and sup E (e*)) < &, then there exists a sequence 0< e,

i i
<e<...,6e¢C (1 =1,2,...), such that y, << supe;, where x, s the

1
characteristic function of the set A.

Proof. V=1IV. Let 4 = 2 be a local mg-nullset. Then, because
of [1] (proposition 5, p. 183), mp(4 N K) = 0 for every compact subset K
of Q. Since m}, is the outer measure belonging to m,, the first part of
condition V is evidently valid. Hence there exists a sequence 0 < e¢; < e,
<...,¢e€ (1 =1,2,...) such that y, < supe;. As a local m_-nullset, A

(2
is my-measurable. Therefore also the functions s;: = y, - ¢; are my-mea-
surable and we have 0 <s, <8, < ... 1xy,.
Now define the sets

S;: ={x;xe2 and s;(x) >0} ¢ =1,2,...

We have mg(8;) < +oo. Because of 8§, 8, = ... 4 and sfly,,
we get | 8; = A. Hence

supmg(8;) = mg(4).
i
In the case of mg(A4) < 4+ o we conclude, using [1] (Corollaire 1,
p- 183), that A is an my-nullset. Now let my(A) = + oo. Then there exists
an integer n such that 0 < mgz(S,) < + oo, where 8§, is an open set. We
have y5 ¢Gg and xg is lower-continuous. Therefore

0 < mg(8,) = sup{E(e); 0 < e< g ,ecCl.

In any case there exists a function e¢E with the properties 0 < e
< xs, and E(e) > 0. Consider the sets 4;: = {x;e(x) =1k}, k =1,2,...
There is A, < S, < T'(e,), where T (¢,) is the support' of the function e, .
A, is closed, therefore compact. Evidently, there is an integer k such that
mg(4,;) > 0. Since A is a local mg-nullset by hypothesis, we have a contra-
diction (cf. [1], proposition 5, p. 183).

IV = V. If the first part of condition V holds for the set 4 < £,
then, by virtue of [1] (proposition 5, p. 183), we infer that 4 is a local
mg-nullset. Therefore, by IV, mz(4) = 0. Consequently, there exists
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a sequence 0<e <e,<...,6e€ (¢ =1,2,...,) with the property
X4 < SUDE;.

1
THEOREM 1. (First characterization of the Bourbaki integral as a ma-
ximal integral.)
Let E[E be a Bourbaki elementary integral on the locally compact space £2.
Then condition V is equivalent to the condition

VI. The Bourbaki integral I, /S, belonging to E|E is a maximal abso-
lutely convergent integral embedded in (M, R).

Proof. V = VI. Assuming condition V, we have, in view of lemma 3,
condition IV and, by lemma 2, condition I1II. Now condition VI follows
by virtue of theorem 6 of [9] and the fact that I,/Sy = IL,,,/S,,,, where
I, /Smy is the integral belonging to the measure my in the sense of [4].

VI - V. Assuming condition VI we infer, by condition III, and,
by virtue of lemma 2, condition IV, whence condition V follows by lemma 3.

The following Corollary shows that condition V is satisfied in some
important cases.

COROLLARY. Condition V holds in the following cases:

1. 2 i8 compact.
2. Q is countable at infinity, i.e. there exists a sequence (K;) (i =
1,2,...) of compact subsets K, such that 2 = ) K;.

Proof. Ad 1. If Q2 is compact, then y, = 1¢€. Therefore y, < supe,,
where ¢, =1 (i =1,2,...) for every subset 4 of Q. :

Ad 2. If 2 is countable at infinity, then there exists a sequence (U,)
of relatively compact sets U; (¢ =1,2,...)suchthat Q = J U,, U, < U,

c..,U;€U;;, (i =1,2,...). Since £ is locally compact, we can find
a continuous function e, defined on 2 with e, > 0, ¢,(x) = 1 for z¢U,,
and e,(x) = 0 for x¢ U,. The compactness of U, implies ¢, ¢E. In the same
manner we can find a continuous function e, defined on £ with the prop-
erties e, > 0, ¢,(x) = 1 for 2zeU,, and e,(x) = 0 for x¢ U,. Again e,cE.
Proceeding in this way we get a sequence (¢;) of functions e, e € such that
e; < e, < ... and, evidently, supe;, > y, for every subset A < Q. Condi-
tion V holds. :

Remark. In the case of our corollary the only reason for maximality
of the Bourbaki integral I,/S; is the space 2 with its topology and not
the functional E.

Now we want to have a condition equivalent to the maximality of
I,/Sg which uses sets given directly by € only.

Definition 1. Let € be the vector-lattice of continuous functions
-‘with compact support on the locally compact space 2. We define the set
Le as follows:



BOURBAKI INTEGRAL 305

A subset A of Q belongs to L iff there is a function eeE, ¢ > 0, and
there are real numbers ¢, > ¢, > 0 such that

= {x; xe R and ¢, > e(x) > c,}.

THEOREM 2. Condition V s equwalent to the condition

VIL. Let A = Q. If there exists a sequence 0 < é) < e{P < ..., e{Pe@®
(v =1,2,...) for every set Le 8 and every number ¢ > 0 such that

fa~r <sup &P and supE(e{?) <e,
i .

[
then there exists a sequence 0 < e, < e, < ...,6e¢€ (1 =1,2,...) such that
<

supe;.

)

Xa

Proof. V = VII. Let A = Q2 be arbitrary and let the first part of
condition VII hold. We have to show that the first part of condition V
holds. Let K = 2 be a compact set and ¢ > 0. If K = Q, then y,¢€ and
Ao = Xa- S0 let Q— K +#@. There exists a compact neighbourhood U,
of K, K < Ug; for the interior U} of Ux we have K = U%. Now there
exists a continuous function e on 2 having the following properties:
e(x) >0 for all 22, e(xr) =1 for all zeK, and e(x) = 0 for all ¢ U.
Hence e<E. Putting

Li:={mize@>1/}, i=1,2,...,

we have
KcUL.

Since the first part of VII holds for the set 4, for every set L, and
every number £/2° (¢ > 0) there exists a sequence 0 < (%) < (™) < ...,
ell) ¢E, such that .

Ya~r; < supef™ and  supE(¢™)) < £/2°.
e Q

D(;fining the functions e{X) by the equality

Q
K), L;
;= 3,
i=1
we have ¢ ¢ € for all ¢ and 0 < e{¥ < ef¥) < ... Since K < U L,
i
sup el > y 4.x-
e

Moreover,

E(e®) = ZE ) < 28/2*

i=1
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and
sup E(e{®) < e,
e
whence the first part of condition V follows. On account of V there exists
a sequence 0 <e, <6, <...,¢eE such that

supe;, = x4-
(2
VII = V. Let A < ©2 and assume that the first part of condition V is
valid. We have to show the first part of condition VII. Let Le 8 and let
¢ > 0 be arbitrary. Since the support of the function e is compact, the set L
is compact. Then there exists a sequence e{P < el <...,0<ePe®
(¢ =1,2,...) such that

supel” > y,.;, and supH(eM) <e.
() (]

Condition VII implies now the existence of a sequence 0 <e, < e,
<...,6e€ (¢ =1,2,...) with the required property.

THEOREM 3 (Second characterisation of the Bourbaki integral as
a maximal integral). Conditions VI and VII are equivalent.

Proof is a consequence of theorems 1 and 2.

THEOREM 4 (Third characterisation of the Bourbaki integral as
a maximal integral). Condition VI is equivalent to the condition

VIIIL. If I/B is a maximal absolutely convergent integral embedded in
the pair (Mg, R) and having the property E|€ < I/B, i.e. € < B and E(e)
= I(ey for every ecC, then I|B = I,/Cy.

Proof. VI = VIII. Let I/B be a maximal absolutely convergent
integral embedded in (M, R) and such that E/E < I/B. 1t follows from
the main criterion on maximal embedded absolutely convergent inte-
grals [6] that the theorem of B. Levi is true for 7/8. In particular, since
E/€ < I/B, we have the implication

0<61<62<...Tf€th’ 6,-6@ (i=1’2’...)’

and the existence of sup F(¢;) < + oo imply

1

feB and squ(e,-)=I(f).

We know that for fe My there is fe Sy iff Nz(f) < +o00. Let 0 < f
¢ Si. Hence we have N;(f) < + oo and therefore there exists a sequence
0<e,<e<..y6e€ (1 =1,2,...), such that

supe; > f and supE(e) = I(supe;) > Ng(f) = 0.



We have
supe;eB
i

and because of [6], theorem 3, B is an ideal in M. Hence feB. Hence
and from the properties of a vector-lattice we infer S, = B. By the defi-
nition,

Ng(f): = inf{supE(e); 0< e, < e, < ..., 6cE, supe; > f}.

Hence and from the theorem of B. Levi we easily conclude that
I(f)<Igx(f) for every 0< feSy. On the other hand, however, it is impos-
sible that I(f) < I,(f) for a certain 0 < feSg. In fact, for if there is
0 < feSg with I(f) < Ig(f) we define F(g): = I5(9)—1(g9), 9¢Sg. Then F
is linear, positive and continuous on &; and F is not identically zero.
Moreover, we have F(e) = 0 for every e<E. But for every 0 < geSy
there exists a sequence 0 <e, <e;<..., ¢¢€ (2 =1,2,...), such that
g< supe Hence 0 < F(g) < supF( ) = 0 for every geSy. Therefore the

mequahty I(f)y< Ig(f) for a 0 < feSg is impossible.

Till now we have proved the following facts: Sp < B and Iz(s) = I(s)
for every $¢Sy;. Assuming B —-S; # O we can find a veB with v¢S;.
Then we have v"¢S; or v ¢Sz, where vt: = sup(v,0) and v :
= sup(—wv, 0). Without loss of generality we may assume that

< ve%—eE. Since Sy 18 embedded in Mg, there exists a sequence
0<8, <8 <...<7, 8635, such that sups eMp—Sg. By virtue of

theorem 3 of [6], B is an ideal a,nd therefore, sups ¢B. But the
theorem of B. Levi implies

Hence
. supI(s;) = + oo.

On the other hand, we infer from s, <v(i =1, 2,...) and v¢®B that
I(s;) < I(v) < + oo for every i, whence

sgpI(si) < 4-oo.

But this is a contradiction. Hence B = Sy is true and we have I/%
= IE/GE.

VIII = VI. Take into account theorem 3 of [9] and the remark after
theorem 3.
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