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Let % be an A-field of characteristic p = 0 and genus g, and let F,
be its field of constants. Let » be a place of k of degree d, k, the comple-
tion of ¥ at u, and o, the ring of u-exceptional integers of k, i.e., those
elements = of k for which ord,(x) > 0 for each place v # u of k. Let E
be the space of n-tuples of elements of % ; for any place v of &, let E, denote
the space of n-tuples of elements of k,. As k, is locally compact, there
is a unique Haar measure in F, such that the measure of ] is 1; here 7,
denotes the maximal compact subring of k,. In paper [3], the authors
proved the following assertion: if o,,..., 0, are the successive minima
of a k,-lattice (‘‘convex body”) L, of volume V and if 2@, ..., 2™ are
independent points of o;, where these are attained, then

(1) V1i<o,...0,< V7 ignotd-D,
(2) 1< |det(af)], < g™+D.
In the case considered by Mahler, g = 0 and d = 1, so that
0y...0, =V, |det(a?)], = 1;

as det(«{)) is a non-zero element of o,, it is, in fact, an element of F,.
These are precisely the results of Mahler [4]. A natural question (answered
automatically in Mahler’s case) is the following: in a more general case
considered by us in [3], what can be said about an inequality of type (1)
if we wish to insist that det(«{’) be a non-zero element of ¥, We can
answer this question in the case where p, is a unique factorization
domain. In this connection it is worth mentioning that o, is always a Dede-
kind domain. In fact, we have

THEOREM 1. Let P be a finite non-empty set of places of k, and let op
be the ring of P-exceptional integers of k, t.e., those elements x of k for which

ord,(x) = 0 for all places v of k which are not in P. Then op is a Dedekind
domain.
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Proof. Introduce the semigroup 27 of divisors of the kind ) a(v)-v,
P

where a(v) are non-negative integers, mostly zero, and consider the homo-
morphism
z— divpe(x) = Zord,,(w) v

v P

of the multiplicative semigroup of non-zero elemeuts of op into 2%. Let a
and g be two non-zero elements of op, and let a be an element of 23 ; it
is clear that

(i) a divides g if and only if dive(a) < divp(B);

(ii) if divp(a) and dive(B) are both not less than a, then divp(a+p8)
> a (divp(0) is supposed to be not less than each element of 27).

Suppose next that

qa WZ; a(v)-v and b l%:'b(v) v

are two divisors in 27 such that divpy(z) > a whenever divp(z) >b; we
claim that b> a. For, otherwise, there exists a place v¢ P such that

b(v) < a(v). Let
b= Db(u):u— D'bw)w

ueP we¢P

be so chosen that deg(b’) > 29 —2 +deg(v). Then, by the Riemann-Roch
theorem,
A(b’) = deg(b’)—g+1
and
A(B'—v) = deg(b’)—g+1—deg(v).

Consequently, there exists a in 4(b’) which is not in A(b’—v); this a
is in op, divp(a) > b and ord,(a) = b(v) < a(v), 80 that dive(a) Fa, giving
us the desired contradiction.

Thus, we have introduced a theory of divisors in op in the sense of [1].
For v ¢ P, denote by p, the set of those elements » in op for which ord,(x)
= 1; p, is obviously a prime ideal in op. If r, denotes the maximal compact
subring of k,, and p, is the prime ideal in r,, then the map

(*) DP/pv - rv/pv

is well defined and injective; as r,/p, is a finite field, the same is true for
0p/p,. It follows that op is a Dedekind domain.

Remark 1. The map (*) is surjective. In fact, let = e r,, and choose

a divisor
a= (Za(u)'u)—v

usP
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of degree greater than 2g — 2. Then, by [5],
kg =k+ [[pa®xpox [] 7w

ueP vzw¢P

and hence the adele with the »-th component  and the remaining compo-
nents 0 can be expressed as y + 2, where y is in k, and 2 is an element of

[[pe®xp,x [] 70

ueP vEwe P
For each w # v, w ¢ P, we have y 42, = 0, and hence Y= —2,ET,.
Moreover, v —y = 2z, is in p,; as « is in r,, ¥ is also in r,. Thus y is in op,
and x—y 18 in p,.
Remark 2. If  is any non-zero element of k, we can, by the Rie-
mann-Roch theorem, find an element § # 0 of op such that, for each v ¢ P,
ord,(f) > —ord,(z).

Then Sz is an element of oy, and k is the field of quotients of op.

Remark 3. The mapping of k) (idele group of k) into the group
of ideals of pp defined by
PN ”p:‘,rdv(zv)

v¢P
is surjective with the kernel

Thus the ideal class group of op is isomorphic to k% /k*Q(P) and
is therefore finite [5], of order hp. The ring op is a unique factorization
domain if and only if 2, = 1, in which case op is a principal ideal domain.

We now prove two lemmas which we shall need in the sequel.

LEMMA 1. If the field k and the place u of k are such that o, is a unique
factorization domain, then the degree d of the place must be 1, so that q, = q.

Proof. It is well known (see [5], Corollary 5, Theorem 2, Section 6,
Chapter VII) that we can find a divisor

a= Za(v)-v

of degree 1 with a(u) = 0. As p, is a unique factorization domain, there
exists # in k such that ord,(x) = a(v) for all v # u. Now

0 = ord,(x)deg(u)+ Zord,,(w)deg('v)

vF#U

= ord, (x)deg(u) + Za(v)deg('v) = ord, (z)deg(u)+1

vFEU

and it follows that deg(u) = 1.
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LEMMA 2. Let k be an A-field, and u a place of k of degree d (not neces-
sarily such that o, i8 a unique factorization domain). Then there exists an
integer a such that

(i) for any a in k,,
lall, = Min |z —al, < ¢u;
[ . Ze€o
(ii) there exists B in k, with B, = q5.
This integer a satisfies the imequalities

(3) g—1<ad<29—2+d.
In particular, for any a in k,, the inequality
(4) @ —al, < ¢

can always be solved for an x in o,
Proof. Let us first notice that condition (i) is equivalent to

() ky =k+pz°x []r,.

vV#EU

To show this, suppose that (5) is satisfied. Denote by a (a € k,) again
the adele for which a, = @, and a, = 0 for » # . By (5), we can write

a =x+2withzin k and 2zin p;*x [[7,. Then 2 = —z, er, for all v # u,
v#Y
and hence x is in o,. Moreover,

lw—alu = ]zu|u< q':'

Conversely, suppose that the integer a satisfies condition (i) of the
lemma. Regarding %, as a part of the adele ring k,, we then have

ko< k+03°% [ [ 70
vEU
and hence

(6) k+ky < k+piex [[r..

v#EU

Since k+k, is dense in %, and since the right-hand side of (6) is an
open, and hence closed, subgroup of k,, formula (5) is true.

Suppose now that (5) holds for an integer a. Let L = (L,), be the
coherent system of lattices (belonging to the vector space k) defined as
tollows: L, = p, % and L, = r, for v #u. Then, by (5), A(L') = 0 (see [5]),
and hence

—0(L) =AL)+g9—-1>¢9-1,
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so that
Qy = mea,s(p;“ X n ,-”" — gD > g

v#EU

ie, ad>g—1.

Now consider the divisor au, a being any integer such that ad > 2g — 2.
Then (see [5])

ky, =k+p,%x ”'r,,.
v#U

All our assertions are now obvious if we take a to be the least integer

for which (5) holds.

Coming back to the question asked at the beginning, we prove
THEOREM 2. Let u be a place of k such that o, 18 a unique factorization
domain. Let L, be a k,-lattice (‘“‘conver body”) in E, of volume V (with
respect to the Haar measure of E, for which the measure of % is 1) and let
Fu(w) = Inf la"l;l

a#0
azeL,,

be the associated norm function. Then there exist n points y©, ..., y™ in o
such that

(M) |det(y§")], =1
and
n
(8) VI [[Fuy®) < vigm.
i=1

Proof. Let oy, ..., 0, be the successive minima of L, and let 20, ...
..., 2™ be n independent (over k,) points of o", where the minima are
attained. Let Z be the matrix whose columns are 2", ..., 2. Since o,
is a principal ideal domain, we can find a matrix A with entries from o,
such that det(4) is a unit of o,,, i.e., a non-zero element of ¥,, and

O
Az — 0 2 ... ™
0 0 2

has zero entries below the main diagonal. Let

(9) 2D = (@®,...,29,0,...,0) @A<i<g<n).
Define a new distance function G,(z) by

(10) G.(z) = F, (A 'x).
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Since det (4) is a non-zero member of ¥,, the function G, has the same
successive minima as F, and they are attained at 2@, ..., 2™, respec-
tively. We notice that #{" is a unit and write

W = @)12® =(1,o0,...,0).
Then
Gu(ﬁ’(l)) = 0'1.
Similarly, if #{ is a unit of o, for some i > 2, we set
so that
G, (D) = o;.
Suppose now that ¢ > 2 is such that 2! is not a unit, and hence
1z}, > q,. Now write
0,...,0,1,0,...,0) = g2+ ... +B,_, 20V 4 (2"~ 15
(1 being at the ¢-th place).
Find, by Lemma 2, elements b,, ..., b;,_; of o, such that
1b;— Bl < ¢*°
and set

i—1
7 =(0,...,0,1,0,...,00— Y bath.
i=1
Then z'® has 1 at its i-th place and zero afterwards; moreover,

i-1
6. (@) =@, (3] (B—b) 2+ (o) 'a%) < o,
i=1 '
Thus we have found points P (1 < < n) in o" such that #'® has 1
at its i-th place and zero afterwards, so that

(11) det(2}) = 1.

The inequality @,(z'™”) < ¢”s;, by (1) and the fact that d =1,
implies
(12) [[6.@) < g0 ..o, <V
i=1 '
Notice that the volume of &, (x) < 1 is the same as that of F,(x) < 1.
Define ¥, ..., y™ by Ay® = 2'®, Since det(4) is a non-zero member
of F,, y© are in o}, and det(y!’) is a non-zero member of F,, which
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proves (7). Moreover, by (10) and (12) we have

[[F.0®) = [[6ua® < g7,
i=1 i=1

‘which is the second of inequalities (8). To prove the filfst one, without
loss of generality suppose that

F,(y") < ... < F,(y™).

Then the k,-lattice F, (z) < F,(y"?) contains the i independent points
y®, ..., y® of o, and hence

03 < Fu(y(i)) .
Consequently, by (1) we have

- n
V'i<oy...0,< nFu(y(i)).
i=1

This completes the proof of Theorem 2.

We now give some applications of Theorem 2. In the sequel, k is an
A-field of characteristic p # 0, and u is a place of k such that o, is a unique
factorization domain; by Lemma 1, the degree of u is 1.

Suppose that

l l
(13)  @i(e) = Donz, and  p(w0) = Dyyw, (<A<
p=1 p=1
are linear forms over %, such that we have identically
(14) D wa@)pa(w) = D z0;.
A A

Let 8 = (B,, ..., B;) be an arbitrary (but fixed) element of k',. Suppose
that there exists b = (b, ..., b;) in o}, such that

(15) Bi—ea@). <1 (@A <A,
Then, for every w in o,

D wa(d)ya(w) = D bw,
. ) 2
is an element of p,, and hence

ae) | X w |, < 2 (Br=9:)) a0} |, < max s (1)

Conversely, suppose that for every w in o,

(a7) | 3 avato)], < ¢ max iy

10 — Colloquium Mathematicum XXXVII.2
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Then, we claim that there exists b in o}, for which (15) holds. To prove
this, let @ = (¢;,) and ¥ = (y,,) be the matrices of the linear forms
p: (1< A<1) and o, (1 < A<1), respectively. Then, by (14), we have

(14’) v =0

In what follows, w will denote a row vector while z and g will stand
for column vectors. Applying Theorem 2 to the lattice

max |y;(w)l, < 1
j

find an (I x I)-matrix

w®
(19) W= ()

w®
with entries in v, such that
(19) det(w{’) =1, o0,...0,< ¢"|det?|,,
where
(19) or = maxy @),  1<i<h.

Now W¥'B is a column vector with the A-th entry Zﬂ, v; (w™?). Hence,
by (17) and (19’), we can write

(20) W¥'B =ats,
where a is in v,, and the vector & satisfies
(21) LAY mad%
By (20) and (14'), we have
(22) B = Pb+y,
where
(23) b=Wla and 6=W¥y.

As W is unimodular and e is in o}, we see that b is also in o',. Solv-
ing the equations W¥’y = § by Cramer’s rule, we see that

(24) y; = (det W¥')"'det(0,) = (det ¥)~'det(6;),

where @; is the matrix obtained from W ¥’ by replacing its j-th column
by &; the i-th row in W¥' is (y,(w®?), ..., y,(w?)), and each of these
quantities is absolutely not greater than o,. Using (19) and (21), we easily
get

|det(0,)]. < ¢~*"¢"? |det ¥,

so that |y;|, < 1. This, along with (22), proves pur assertion.
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Thus we have

THEOREM 3. Let ¢, and y, (1 < 1 < 1) be linear forms over k, such that (14)
holds. Let B = (By, ..., f;) be in Kki,.

(A) If there ewists b in o', such that (15) holds, then (16) s true for every w
. 1 ’
in o,.

(B) If (17) holds for every w in o.,, then there exists b in o, for which (15)
holds.

Let now

(25) Li@) = D) bz, (1<j<n)

i=1

be n linear forms over k, in m variables #,, ..., #,, and let

(25") Mi(y) = X 0uy; (L<i<m)

j=1

be the transposed system. Let a = (a,, ..., a,) be any vector ki, and let
8, t be integers not less than 0. Let ! = m +» and let = be a prime element
of k,. Applying Theorem 3 to the forms

L) +9y) (A< ),

%) = Ly eeeypy oo =
P1(2) = @a(@yy eoey By Y1y +vvy Yn) Iﬂswz—n _ (A>mn),

v, (A< n),

Ya(w) = 9a(yy oovy Upmy O3y oeny 0p) = lﬂ-'(uz-n—Mz—n("’)) (2> n),

and to the vector

B =By B) = ”—t(aly ceey @y 0,...,0),
we obtain
THEOREM 4. Let L; (1<j<n) and M; (L <i<<m) be the linear
forms (25) and (25'), respectively. Let a = (a,, ..., a,) be any vector in k.,
and let 8,t> 0.

(A) If there exists a in o) such that
(26)  ILi(a)—gl.< g, lal.<g¢® (A<i<m,1<j<n),

then, for all ¢ in o],

(27) “ ﬁcjaj'

o < max (@1 M0l ¢ lesh) -
=1 1<ism
1<j<n
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(B) If, for every c in oy,

(27') 13 o], < g2+ max (@1, (e)ll, g7 eyl
i=1 1Sisn

then (26) can be solved for an a in oy .
Finally, noting that, for any ¢ = (¢, ..., ¢,) in oy,

Zn:chj(a’) = fMi(c)wi’

j=1 i=1

we eagily obtain, by Theorem 4, the following

THEOREM 5 (Kronecker). Let Lj(®yy...,%y) (1<j<<n) be n linear
forms in m variables, and let a = (a,, ..., a,) be any vector in k;,. Then the
following two statements are equivalent:

(A) For each t > 0, there exists a in oy, such that
(28) ILi(a) —alu< g™ A<j<n).

(B) If ¢ = (€44 ..., C,) t8 any vector in oy, such that the form ¢, L,+ ...
... +e¢,L, has coefficients in o,,, then c;a,+ ... +c¢,a, i3 an element of o,,.

Proof. Suppose that (A) holds, and let ¢ in o;, be such that ¢, L; +...
... +¢, L, has coefficients in p,, i.e., | M;(c)ll, =0for 1 <i < m. Let t >0
be arbitrary and let a (in o)) satisfy (28). Then, putting

¢ = maxla,,, .
- 1

by Theorem 4 we have
| Y o], < max (¢ 13 (@)l 7" I6l) = g max gl
j=1 %] j

Letting ¢t approach oo, we see that

|2 o] =0,
7

i.e., D cja; is in o,.

B

Suppose now that (B) holds. Let ¢ > 0 be any integer. Inequality (27')
is satisfied by every ¢ in o, except perhaps finitely many ¢ for which

(29) m@x |cj|u< qt+20—l+3(m+n)0
J

(notice that || Y ¢; a;||, < ¢*~ by Lemma 2).
i
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If an element ¢ of o, satisfying (29)is such that || M;(c)|, = 0 for

1<¢<m, then |
13 0. =0,

and hence ¢ satisfies (27’). For the remaining finitely many ¢ in o;, satis-
fying (29), we can obviously choose s such that (27’) is satisfied. It follows
from Theorem 4 that the inequalities

UL (@) —aill, < q™*  and |ag, < ¢°

can be solved for a in o;;. This completes the proof of Theorem 5.

CoroLLARY (Kronecker). Let 0,, ..., 0, be n elements of k, such that
1, 0,,...,0, are linearly independent over k. Then, for any a = (ay, ..., a,)
in k3, and for any integer t > 0, we can find an element a of o, such that

160 — a;ll, < g7
Proof. Take L;(z) = 0,x (1 <j< m) and notice that condition (B)
of Theorem 5 is automatically satisfied.
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