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ON ANALYTIC INVARIANT MEASURES
FOR EXPANDING MAPPINGS

BY

K. KRZYZEWSKI (WARSZAWA)

It was stated without proof in [1] that an analytic expanding map-
ping of an analytic compact connected manifold has a unique analytic
normalized invariant measure. In this note we give the complete proof
of that theorem.

We first recall some definitions. Let M be a connected C”-manifold
with a fixed Riemannian C“-metric ||-||. Then a Borel measure x on M
is said to be O” if for each local chart (G, a) on M there exists a positive
C”-function g, on a(@) such that

u(d) = [ g.(o)de
a(4)
for each Borel set A c G. If 4 is & C”-measure on M and ¢ : M — M is
a C“-immersion, then there exists a unique positive C”-function Jp on M
such that

ple(4) = [Jpdu
A

for each Borel set A = M, provided that ¢|A is injective. A C'-mapping
@: M — M is called expanding if there exist numbers ¢ >0 and b>1
such that
IDg"(a)l| > ad™ [lall
for a e T(M) and » € N. From now on, M will be compact.
The following theorem will be proved:

THEOREM. For each expanding C”-mapping ¢ of M there exists a umique
@-invariant mormalized C®-measure. '

Proof. In view of [2] it is sufficient to prove only the existence. For
this purpose let x be the normalized Riemannian measure induced by
II*|l. Moreover, let U: C*(M, R) -~ C”(M, R) be the operator such that

(1) U@ = D F@(JITe@)

zep—1(z)
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for # € M. It is well known that if ¢ is a positive C”-function on M, then
the C”-measure with the density g with respect to u is g-invariant iff

(2) Ulg)=g.

We shall prove the existence of such a function using the universal
covering space of M. It is well known that two C®-diffeomorphic C“-
manifolds are C®-diffeomorphic. Hence, in view of [3], there exists a C“-
covering mapping n: R™ — M, where m = dimM. Let ||*[l. be the lifting
of ||-]| to R™, and let u, be the Riemannian measure induced by ||*|.. It
is well known that there exists a C“-diffeomorphism ¢, of R™ onto itself
such that

(3) MOQPy = QPOT.

Moreover, ¢, is expanding. Substituting an iteration of ¢ for ¢, one
may assume that there exists b > 1 such that

(4) lD@s (a)lle = bllalle

for a e T(R™). Let I' be the group of deck transformations of the covering
mapping n. Bach element of I' is a C®-isometry. Let Cq(R™, R) be the
set of all I-invariant fe C®(R™, R). Then f — f, = fon is a bijection
of C°(M, R) onto Oy (R™, R). Therefore

(5) Us(fa) = (T ()

where fe C”(M, R), defines the operator of Cy(R™, R) into itself. We
shall express U, by means of ¢, and some elements of I". For this purpose

let us remark that, by (3), y ®, @«0y0o@, ' is a homomorphism of I' onto
its subgroup I. Let I'; be a set such that its intersection with each right
coset of I'; in I' is a one-point set. Then

(6) Ua(f) = D fop;toy(J; oy

yely
for f € C¥(R™, R). For the proof, we first show that
(7) Iys y — (nogi'oy)(2) € ¢~ (n(2))

is a bijection for # € R™. For this purpose let x € R™. Then (3) implies
(mo@x'oy)(®) € ¢~} (n(x)). Moreover, the mapping defined in (7) is injective.
To prove this, let

(mogxloy) (@) = (mogx'oy,)(w)

for some y,, v, € I';. Since I" acts transitively on each fibre of the covering
mapping = and without fixed points, there exists y € I" such that

PeOYOQPy lOY; = P,
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By the definition of I'y, this implies that y, = y,. To complete the
proof of (7) it is sufficient to observe that

(8) the index of I'y in I is equal to the multiplicity of ¢.

For the proof, let ¢; be the canonical homomorphism of =,(M, Z)
into =, (M, ¢(%)) for z € M and let f; be the canonical isomorphism of
I' onto m, (M, =(x)) for # € R™. Then f, ;0P = @n4)Of, and the multi-
plicity of ¢ is equal to the index of .y (m (M, #(a))) in =\(M, ¢(n(2)))
for # € R™. This implies (8).

Returning to the proof of (6), let us remark that since = is a local
isometry, (3) implies Jp, = (Jp)oxn. Hence
9) Joi' = ((Jp)omogy?) ™.

Now (1), (5), (7), and (9) give (6).

Using (6) one proves by induction that
(10)  U:(f) =

= 2 fopzloy,o ... opsloy, ” (Jps)oy0pxtoy;10...opsloy,
W1seeesrp)ely =1

for fe C3(R™, R) and n N.
Now let #, € R™ be a fixed point of ¢, (see [3]). Then there exists
r, > 0 such that

(11) n(@) = M,

where G, = B, (%, ;) and g, is the distance induced by ||-|ls. We prove
now that there exists r, > r, such that

(12) (YnO‘P;lO?n—lo o<p;loy1)(G,) c Gy,
(13) (@070 ... 09 0y (Gy) = Gy

for y,,..., 7, €Iy and n e N, where G, = B, (%, 7,). For this purpose
let us remark that (4) implies

(14) o (@3 (@), 931 (¥) < b7'eu(z,y) for @,y e R™.
By (14), it suffices to prove (12) which in turn follows from
n-1
(15) Ox ((‘}’nO‘P:IO Va—-10 ++- 0@y '07,) (), a’o) <o 2 b~*

=0

for v € @,, where p,, ..., yp€ I's, n € N, and

7o = Sup sup Qt('}’ (@), a’o)-
yel'y ze@y
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One proves (16) by induction using the fact that z, is a fixed point
of . and (14). Now, for ((a, b), (#, ¥)) € T((R™)*) let

(16) I {(a, B), (2, 9))|]o = V(a, 2)I3+ lI(B, D).

Then |- ||, is 2 Riemannian O®-metric on (R™)%. Since the Riemannian
metric ||-|ls is complete, G, is compact. Therefore, y € I'y, ¢3!, and Jo;*
restricted to @, have the complex analytic extensions f,, g, and h to
B, (@, é;) = (R™)* = C™, respectively, where d, is a positive number
and g, is the distance induced by ||-||,. Now let us remark that

(17) Df,(x) = Dy(#)®Dy(x), Dg(2) = Doy’ (x)® Doy*(x)
for x € @,, where y € I',. From (4), (16), and (17) it follows that
IDf,(®)llp =1 and || Dg(z)ll, < b~

for « € G,, where y € I',. Hence, by possible decreasing d,, one may assume
that there exist positive numbers d,, d,, 4,8, < 1, such that

(18) IDf,(2)lo<d, and [ Dg(2)ll, < d,

for 2 éB,o(Gz, 8,), where y € I',. Decreasing 6, aga.in, if necessary, one
shows that there is I > 0 such that

(19) Jos'(z) > L™
for x e G, and
(20) [Jox ! (@) — h(2)| < Leo(x, 2)

for x €@, and 2 € B, (@3, ;). We now prove that there exists d, € ]0, J,]
such that if z € B, (G4, 61), 15 -.+) ¥n € I's, and n € N, then

21) £y (9(Fy -+ 9(f,(2)) -..)) is well defined and belongs to B, (Gs, 3s)-

For this purpose let v, ..., ¥, € I';, and n € N. Then, in view of (12)
and (13), we have

(22) if © €@y, then
Foul0(Frny - Uy @).-) = a (85 (ncs -+ 95" (12(2))....)) -

Now let z € B, (G,, 8;), where 0, = d;d7'. Then there exists z €@,
such that g.(2, z) < 6,. Let p be a O*-path from z to z such that its
I ll-length is less than 4,. Then, by (12) and (22), it is sufficient to
prove that

(23)  the path t — f,,ﬂ(g(f,,ﬂ_1 g(f,,l (p(t))) )) is well defined and its
- lo-length is less than d,(d,d,)""!.
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One shows (23) by induction on # using (12), (13), (18), and (22).
We prove now that there exists ¢ > 0 such that for each z € B, (G, 9,)
there exists & € G, such that

" }h(fy‘(g(fn_l...g(fyl(z))...)))\

(24)
i-1 Joy' (m(«r:‘(n_l e g7 (72(®)) 1))

N

for ., ..., 9, € I';, and n € N. For this purpose, let z and « be such as in
the proof of (23). Then, in view of (12) and (19)-(23), the left-hand side
of (24) does not exceed

- + ‘ h(f?i(g(f‘/i-—l e g(fn (2)) - ))) -—Jqﬁl(yi(q);l(yi_l o (P:l(yl (w)) B )))l

IR

i=1 J‘P;l('}’z’(‘l’;l(?i—l cx (Vl(m)))))

< exp [L2 é? eo(fy,.(y(fy,_1 e 9(Fy (@) )) s il 9w (pica - 93 (1)) )))]

< exp [Lz S A dz)n—l]-
i1

This completes the proof of (24).
Now it is sufficient to show that there exists d > 0 such that

(25) ad'< Uy1)<d for meN.

Suppose that (25) is true. Then, from (10), (12), (24), and (25) it
follows that the sequence (F,) is uniformly bounded, where

(26) F,(2) = 2 ]n] h(fy,.(g(fy,_l---g(fyl(z))m)))

@1seevp)ery =t

for z € B, (G4, 6,) and »n € N. Therefore, by the Montel theorem for com-
plex analytic functions, there exists an increasing sequence (k,) of natural
numbers such that the sequence

kp—1

(w3 7

t=0

is locally uniformly convergent to a compléx analytic function (#, = 1).
From (10), (22), and (26) it follows that F, is the extension of U%(1)|G, for
n € N. Therefore, the sequence

kp—1

(k* 3 Ui)164)

T=0
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is uniformly convergent to a C“-function. Hence, by (11), the sequence
kp—1

(5 3 viq)

=0

is uniformly convergent to a function f € 05 (R™, R). From (25) it follows
that

(27) Ue(f) =1

and f is positive. But there exists a positive function g € C*(M, R) such
that f = g«. Therefore (27) implies (2), which will complete the proof.
It remains to prove (25). For this purpose let us remark that the method
of the proof of (24) also enables us to show the existence of d > 0 such that

n Joy! (7i (‘7’;1 (7’;’-1 cor 9’:1(71("”)) . )))

i=1 J«r:’(y,- (‘P;l(%‘—l <P$1(71("J))---)))

for z, y € @,, where y,, ..., y, € I'; and n € N. It is easy to see that there
exists a Borel set A = @, such that

<d

(28)

(29) n|A i8 a bijection.
Letwe A, yyy ...y ¥, € I';, and n € N. Then (28) implies
(30)  dus((px'oyn0 ... 0@k oy)(4))

=d fﬁer:‘(w(«p:‘(y.--x q):‘(y;(y))--.)))dm(y)
A 1=1

= l‘*(A)ﬁJq’;l (%‘(‘P;l (?i-1 ‘P:I(‘Y:(w))'")))'

i=1
But from (7) it follows that for 2 € R™ and n € N the mapping
T332 (y1y -y ¥a) = (OPFI0Y,0 ... 030 p1) (@) € p™"(m(w))
is a bijection. Hence, form (29) we infer that for n e N

Bl) @ |J (@sloyo...0@5'0p)(4) is a bijection
(yl,....vn)el‘g
and
(32)  the sets (px'oy,0...0@5%079,)(A) are pairwise disjoint, where
(Y1y oy ¥n) € I3
It follows from (29) and (31) that

pe(d) =ps( U (ga'op0...093%09)(4)) = 1.

(71'- .o n?n)erg
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Consequently, by (30) and (32), the right inequality in (25) holds.
The proof of the left one is similar. This completes the proof of the Theorem.

Remark 1. The above proof can also be carried over without using
the theorem on universal covering mapping of M. But then the proof is
a little longer.

Remark 2. We want this note to be self-contained, and therefore
we do not use any theorem on convergence to invariant measures for
expanding mappings. Otherwise, the last part of the proof could be short-
ened.
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