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1. Preliminaries. Every point z = (z,, z,) €C? can be associated with a
(2 x 2)-matrix

(L1) u=u()= —i(_fz Z‘).

Zy 2z,
The set of all such matrices satisfying the condition detu = |z,|>+|z,|> =1
constitutes the special unitary group SU(2). The group SU(2) acts on C?
preserving the ball

B ={z =(z;, 2,) €C*: |z,*+]z,|* < 1}

and its boundary — the unit sphere S. The sphere S can be identified as
above with SU(2), and then the normalized Lebesgue measure on S corre-
sponds to the Haar measure on SU(2).

The irreducible representations of SU(2) can be realized on the spaces
#' of homogeneous polynomials of degree 2/ in w = (w,, w;) € C?, where |
=0,1/2,1,3/2,... The space & is a unitary space with an appropriate
inner product for which the polynomials

1
(1.2 pi(w) = wiIwhtd
S/ T TR
j= -1, =1+1,..., |, form an orthonormal basis. The representation T is
given by the mapping
(1.3) (T.p)(w) =p(u'w), pe,

where u’ is the transpose of u. The transformation T, is unitary with respect
to the inner product in #.
For every complex measure u on SU(2) let

Il = | diul(@

SU(2)

denote the total variation of p. The space of all such measures with the total
variation norm will be denoted by M (SU(2)).
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The Fourier transform i of a measure u is a sequence of ((2/+1) x
(214 1))-matrices such that

(14) A= | T-,du(u).
sU(2)
This for feL'(SU(2)) yields
= | fWT-_,du.
SU(2)

The matrix entries of T} in the basis (1.2) will be denoted by t) (u),
—I<k, j<I, and the space of linear combinations of these functions by
T(SU (2)). The functions ¢}, form an orthogonal basis for L* (SU (2)) with ||t} »
= (214 1)~ Y2, The relation

(=Zw +Zw) 2y wi+z,w) T D Trwytt

] 1
JI=)1+j)! k;-,t"’(") JI=R)(I+k)!

implies that the functions t;;(u(z)) are homogeneous polynomials of degree 21.
The representation T can be extended on C? by comparing (1.1) and
(1.3) which for ¢; yield

the(2) = |21t (u (l’fﬁ)) .zeC?.

This gives a natural extension of the polynomials ¢}, on C2. Moreover, by an
elementary calculation we obtain

(1.5) th((2) = {07 G (2),  (eC2

In other words, t},(z) are homogeneous polynomials in z,, z, of degree [+k
and of degree /—k in z,, z,.
Note that the functions t}, (z) are harmonic with respect to the Laplacian
0 0 + 0 0

(=i’

(cf. [1], p. 34).
We define the Poisson kernel on B by

(1.6) P(z) = i QI+ 1) ¥\ (2),
1=0
where

YO =uT = 3 )

j=-1

and we write P,(u) = P(ru), ueSU(2).
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The sequence (P,) is an approximative identity if r — 1.
For a measure u in M (SU(2)) let us denote by P [x] the function on the
ball B given by

P[ul(2) = (P*p)(2),

where the convolution * of a function f on B and a measure u is defined by

(f*w@= [ f@'2)du).
SU(2) .
LEMMA 1.1. The function P[u] is harmonic in B and the following
expansion holds:

a

Plul(@) = Y QI+ *p)(2).
=0
Proof. Since |x'(z)] < (2/+1)|z|*, the series in (1.6) is almost uniform-
ly convergent in B. Let z be in a compact subset K of B; then

Pl = | X @+DY @ '2)duw)

SU(2)I1=0

- o]

=Y @+ [ Y 2)du()

1=0 sU(2)
= 120(21“'” D' *W ()

and, by the inequality |(x'#*p)(z) < (21+1)||ull|z|*, the series is uniformly
convergent in K.

We see that
[}

@)=Y [ k@ '2)du)

k= -18SU(2)

1 1
=Y ¥ [ thoHdp@ihe
k=-1j=-1SU(2)
=tr(2() T) ,
is a linear combination of harmonic functions tj, (z).

It follows that P[u] is a harmonic function.

The next fact is a transformation of the corresponding classical theorem
proved in [5] (cf. Theorem 11.19). '

THEOREM 1.1. The mapping p — P[u] is a linear one-to-one correspon-
dence between M (SU(2)) and the space of all harmonic functions h in B which
satisfy the condition
(%) sup | |h(ru)ldu < C < oo.

r<1 su(2)
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2. Hardy spaces H}(SU(2)).

DEerFINITION 2.1. A measure u in M(SU(2)) is said to be of analytic type
n if its Fourier transform j is of the following form:

() =0 (zero matrix) for I <n,

it(]) is supported by the n-th row from below (0-th is the last one) for /
Zn.
By Theorem 1.1 we see that there exists a space of harmonic functions
in B which corresponds to the space of all measures of analytic type n. Using
Lemma 1.1 we can see that the space may be defined as follows: '

DEeFINITION 2.2. A function h harmonic in B belongs to the Hardy space
H}(SU(2) if
hxy' =0 for I <n,
hxy'is a linear combination of functions t;; (j =I—n, —I <k <) for !
=>n, and
lAll,» =sup [ |h(ru)ldu < co.

r<1 su(2)

In particular, H§(SU(2)) is the usual Hardy space defined by analytic
functions in B (cf. [1] and [6]).

It turns out that most of the properties of the usual Hardy space hold
in the spaces H,(SU(2)).

For a function f on the ball B we define slice functions

Y@ = f(lzy,{z5), u=ulzy, 2,)eSU(2),
where { is in the disc U = {{ €C: |{| < 1}. By invariance of the Haar measure

and Fubini’s theorem we have
1 2n

(2.1) [ ferwdu= | z—j'f"(re“)dtdu.

sU(2) su(2) < o

If f€H!(SU(2), then, as follows from Theorem 1.1 and Definition 2.1,
there exists a measure u such that f = P[u] and u is of analytic type n.

Lemma 2.1, Let feH)(SU(2)) and u be a measure of analytic type n
such that f = P[u]. Then every function g*({) = |{|~2"f*() is an analytic
function in U with the Taylor expansion

0 = T A1,

where fi(u) = (214 1)(x' * p)(u). Moreover, for almost all ueSU(2) the func-
tions g* belong to the Hardy space H'(T) and (see also [6])

Il = [ gl du.

SU(2)
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Proof. It follows from Lemma 1.1 that f has the expansion

@® @ 1
f@=% (21+1)(x’*#)(2)='Zo(2l+l) Y Citka-a(2),
=0 =

k= -1

where ¢; = (i()),- ... Consequently, by (1.5),

® 1
=1 Y @+ ¥ at-a (2"
I=0

k= -1
=102 Y @I+ * (@) 20
=0

Hence

YO =01P"g"¢) and g*(Q)= Y fiw{ ",
1=0

Since |f;(u)] < (21+1)?||y||, the series which defines g* is almost uniformly
convergent in U. This means that g" is an analytic function.
For every function h harmonic in U,

1 %" )
m(r; h) = 3 [ Ih(re™) dt
0

is an increasing function of r (cf. [5]). The Beppo-Levi theorem and (2.1) yield

[ lgllgrdu= [ lLimm(r;g*)du

SU(2) su(2) r—1

= [ limm(r; f*)du

su(2) r—1

=lim | m(r; f9du=|fll,,

r=1 su(2)

which completes the proof.
For a function f on the ball B we write f,(u) = f(ru), where ueSU(2)
and 0<r<1.

THeoreM 2.1. If feH,(SU(2) and f*(u) = lim f,(u), then

r—1

Em||f*—£ll . = 0.

r—1

Proof. Let g* be defined as in Lemma 2.1 and let
gr(€") = g*(re").
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The limit
(g“)* (") = linrll gt (e

exists a.e. on T and (cf. [5])
lim I(g")* —g2ll.« = 0.

r—1
We see that f*(e'u) = (g“)* ("), so the limit f* exists a.e. on SU(2).
By (2.1) we obtain

| .
I/*=flige= [ 5= [ ILSY* (€ —f* (") dt du
: su(2) T o
= [ NSY* =51 du
SU(2)

= | MgY*—r*"gl . du.

SU(2)

From Lemma 2:1 we have

Igy*—r*"gill,. < 2llg"lly;n  and [ llg¥llyadu = Ifll,

SU(2)
so the Lebesgue bounded convergence theorem implies the result.
The next theorem is a version of the F. and M. Riesz theorem.

THEOREM 2.2. A measure u of analytic type n is absolutely continuous
with respect to the Haar measure on SU (2).

Proof. The function f = P[u] is in H}(SU(2)). Moreover, for every r
<1 the function f(rz) is continuous in the ball B, and it can be represent-
ed as a convolution with the Poisson kernel. Hence, by Theorem 2.1,

f@2)= Iinllf (rz) = lirrll (P+f)(2) =(P+f*)(2).
Consequently, P[u] = P[f*] and, by Theorem 1.1, du = fdu; the proof is
completed.

We remark that for f €H,(SU(2)) and its radial limit f* we have || f||,,
=/l

UsiLng Theorem 2.1 and Lemma 1.1 we can find a sequence of linear
combinations of the functions t;,_,, | > n, which is convergent to f* in L'-
norm. This implies that the mapping f — f* is an isometry of H}(SU(2)
onto the closure in L'-norm of all linear combinations of the functions t; ,_,,
[=n.

We have shown

CoroLLARY 2.1. The space H!(SU(2)) can be identified with a closed
subspace of L'(SU(2)) under the mapping f — f*.
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It follows that Hj(SU(2)) are Banach spaces.
From now on we identify f and f*.

3. The Paley inequality and multipliers on H,(SU(2)).
DerFiniTION 3.1. A sequence {,} of half-integers is called lacunary of type
nif I, >n and

he1imm o 001 fork=1,2,3, ...
lk—n

Lemma 3.1. If feH}(SU(2) and {l,} is a lacunary sequence of type n,
then there exists a constant K = K(A) such that

[ o}
(T WAN2)" < Kilf 1,
k=1

where fi(u) = 214+ 1)(x' * ) (u).
Proof. By Lemma 2.1 the function f can be expressed as

S@) =1 ¥ A8,

and for a.e. ueSU(2) the functi'ons

0 = T

belong to H!(T). We are going to use the classical Paley inequality for g“.
For a function he H'(T) with the Taylor expansion

a

hQ) =Y cl"

n=0

and a lacunary sequence {n,} such that n.,,/n > 41> 1, there exists a
constant K = K(4) such that

(Y lenl®)"? < K |Ihll
k=1
(cf. [7], Theorem 7.8). Hence
(3 14,137 < Kllg"l,,s-
k=1

Let {a,} be a sequence in I*(N) with laxll,2 = 1. Then, by the Schwartz
inequality, we can write

a0
2 lad1fiy, @) < Kllg“ll 51 -
k=1
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We integrate both sides of the last inequality over SU(2) and from Lemma
2.1 we obtain

a0

Y ladllfill s < KN f Ml
1

Now we take the supremum over all the sequences {a,} with llaill,2 = 1 of the
left-hand side, and this completes the proof.

The following can be called the Paley inequality for H}(SU(2)).
THEOREM 3.1.

(X 107G < KNSl

where ||| X|l| = tr \/XX* is the Hilbert-Schmidt norm of X.
Proof. It is sufficient to show that |||f(lk)||| <|Ifyll,: and use Lem-

ma 3.1.
Since every matrix f(/) has only one non-zero row, we see that

Jf (1) f (I)* has at most one proper value. Hence ||| S| = 11f II, where
IX]| is the maximum of proper values of /XX*. XX*. It is well known that
OB [FA L1, and this completes the proof.

An operator M on H}(SU(2)) which commutes with right translations
on SU(2) is completely described by a sequence {M(])} of ((2/+1) x(2/+ 1))
matrices (cf. [1] and [2]). In our notation we have

Mfw =3 ufOMOT = 3 (fi*M)),

where M, (u) = tr M()) T}. We see that every matrix M}(l) is supported by the
n-th row from below; thus, if the operator M is bounded in [”-norm, then
M maps H}(SU(2) into

HZ(SU(2) =(H: A I)(SU(2), p>1.

DerFiniTION 3.2, We call a bounded operator M: H! — H? which com-
mutes with right translations an (H} — H?)-multiplier.

Denote the space of all (H: — HP)-multipliers by .#(H2}, HP).

ProrosiTiON 3.1. If for every natural number k a sequence of matrices
IM (D) satisfies the condition

Y
Y QI+ M D) = A% < o,
I=k
then the operator M defined by the sequence is an (H— H?)-multiplier.
Proof.-First observe that

1A @M@ < IMOIILFON .-
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Let now k=0,1,2,4,8,... Using the Parseval equality and The-
orem 3.1 we get

IMF1I22 = 3 @1+ DI O MO

o 2k R
=Y ¥ +nIMmanif o’
k=01=k

o0 2k
< Y (X @+ 1)IMOI?) max |If o
k=0 I=k k<i<22k

a
< T A1 0" < A2 K111
k=0

for every feH,(SU(2)). The proof is completed.

ProposiTION 3.2. There exist (Hy — H2)-multipliers which are not of the
form Mf(u) =(f »p)(u) for any measure u on SU(2).

Proof. Let {} be a lacunary sequence of type n and let M be defined
as follows: M(]) =0 for | not appearing in {l} and (24 +1)">*M(l) = J,
is a diagonal ((2/,+1)x(2/,+1)}-matrix. Assume that the sequence
(2l +1)"Y2tr J, is not bounded and ||J,}| < A for k=1, 2, ... (e.g, Ji can be
identity matrices). It follows from Proposition 3.1 that the operator M defined
in this way is an (H} — H2)-multiplier.

We will show that M cannot be represented as a convolution with a
measure.

Suppose to the contrary that there is ueM (SU(2)) such that ;= M.
Then the linear functional L on T(SU(2)) defined by

-2}

Lpp= | pdp= Y QI+Dtrp()M()

SU(2) =0

is bounded in L®-norm.
Since the sequence tr M () is not bounded, there exists a sequence {a,}
in I'(N) such that '

Y atr M(l) = .
k=1

The functions

Pm@) = Y a(*@)-x*"" W)

k=1

10 — Colloquium Math. 56.1
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are central functions, so it is sufficient to calculate their values on elements of
SU(2) of the form

i0
e0) = (g g_m), 0<60 <2n.

But the following formula holds:
2(e®)—x* "' (e(8)) = 2cos (2l +2)6)
(cf. [1], p. 32). Hence

I1Pmll« = Sup pm(e(6)) < sup Y. |al 2|cos (2], +2) 6]
k=1

[+ ]
<2Y lal.
k=1

On the other hand, (2/+1)§' = I (identity matrix). Hence

Lew = T ante M)

and so L(p,) oo as m —oo. This gives a contradiction.
The proposition yields the following

CoroLrary 3.1. M(SU(2) & .#(H,, H)).
I am indebted to Prof. Marek Bozejko and Prof. Andrzej Hulanicki for
suggesting the problem and help with the work on this paper.
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