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THE BLOCK DECOMPOSITION OF THE WEIGHTED BESOV SPACES

BY

GERALDO SOARES DE SOUZA (AUBURN, ALABAMA)

We introduce the block space A, defined by

(oo} (o]
A, = {f :[0,27] - R; f(t) = chan(t); Z|0n| < oo} .
n=0 n=0
Each a, is a weighted block, that is, a real-valued function a, defined on
[0, 2], which is a(t) = mx 1(t), where I is an interval and || is the length
of I, xs the characteristic function of I and p is a non-negative continuous
function defined on [0, o) such that
(i) p(0) =0,
(ii) p is increasing,
(iii) p(t)/t is integrable on [0, 27],
(iv) Jy(p(t)/t)dt < Cp(h) and
2T
(v) [, (p(t)/t?) dt < Cp(h)/h.
C is an absolute constant and may not be the same at every occurrence,
throughout this paper.
We endow A, with the norm ||f||4, = inf }_,_, |cn|, where the infimun.
is taken over all possible representations of f.
For a similar definition of A, see [4]. In general, for the block functions

in the unweighted case see for example [12].
We define the weighted Besov spaces:

27 27w
A= {r:02m =R, = [ [T - ydeay < ool

- ]2
o ¢ l=-dl

where p satisfies the earlier conditions.
These spaces have been studied in [6]-[9]; for the unweighted case see
[2], [5], (10] and [11].

1980 Mathematics Subject Classification: Primary 42A99.
Key words and phrases: Besov, Lipschitz spaces, equivalence of Banach s-aces.
weighted spaces, analytic functions, block decomposition.



214 G. S. DE SOUZA

Notice that for 1 < p < 0o and p(t) = t1/?, A, is the space denoted by
A(1-1/p,1,1) and extensively studied by M. Taibleson [11], T. M. Flett [5]
and others.

The main purpose of this paper is to show that the spaces A, and A, are
équivalent as Banach spaces and also to give an analytic characterization of
these spaces. We shall do this by showing a series of results..

TurorEM A. If f € A, then f € A,. Moreover, ||f||a, < C||f|la, where
(" 1~ an absolute constant.

Proof. We just need to prove the result for f,(z) = mlﬂ-)-x;(t), where
I = [0, k)], since A, is invariant under translations.
Therefore, all we need to prove is that

2r 2w
f f |fh(|i):yflrlzz(!l)|p(z —y)dzdy< C,
0

where C' is an absolute constant.
In fact,

h21r

27 h
< da:d + dzd] A+ B,
“fIIAp Il' _ ylz Y f f _ y|2 y

p(h) [

_ L7 ’"p(x v) 0 " p(t)
=] SR e [ d”p(h)f @

Now, using properties (iv) and (v) of p we get A < C. The estimate for
B is similar, so that we have B < C.

Our argument shows that, for f, as above, we have ||fy||]a, < C, and
consequently, if f € A, it follows that ||f||la, < C||f||a,. So Theorem A is
proved.

We now introduce the space S, of all those analytic functions F' on the
unit disc D for which

IFlls, = f f |1-“'(re"’)|”(1 ’)dodr<oo,

-

where p satisfies conditions (i)—(v) above beside of

where C is an absolute constant. The dash means the derivative of F' with
respect to 2. For this space S, the reader is referred to [4].
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Notice that (v) in the definition of p implies (*) but not conversely. l'or
example, p(t) = t or p(t) = In(1 + t) satisfy (x) but not (v).

THEOREM B. If f € A, then F € S, where

2
ett + z

F(z) = 5 J S

Moreover, ||F||s, < C||fl|la,, where C is an absolute constant.
Before proving this theorem we need the following result.
LEMMA C. For 0 < [t| < m, we have

1
1 p(l—r) p(t)
<
fl-—?rcost+r2 1-7r dr Ct2 ’

where C is an absolute constant.

Proof. Let

1
1= [ . L= gy
0

1 —2rcost + r2 1—-7r

Notice that

1 2
1 <
) 1—21‘C05t+1’2_(1—r)2 f0r0<r<13nd0<|t|<7l',
1 C
2) C an absolute constant.

< —
1—-2rcost+r2 ~ 2’
For these estimates see {13, p. 97].
For 0 < t < 1, we have

1-
_ Q-7
I(t)_(af + f)1—2rcost+r- 1—r dr=A+B.

Using 1) above and condition (v) on p we get

1 27
A<C f f?_rggd Cfﬂ(s—)dsggtfwdsgc&:).

Using 2) and (iv) we have

1—71 C ¢ p(s t
B<t2 f”( ) dr EJstgc,"%.

1—-1r

Consequently, I(t) < Cp(t)/t® where C is an absolute constant.
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For 1 <t < w, we use (iv), (ii) and 2) to get

I(t)_tzfp(l d_tzfps)d <CP(1)<C%.

The case —7 < t < 0 is similar, therefore Lemma C is proved.
Proof of Theorem B. We have

F'(Z) f [f(eu) f(eto)]e't dt,

(et — 2)2

and so

i(t+6) i6
IFI( )|< f |f(€ ) f(e )I di .

— 2rcost + r2

Let us now estimate || F||s,. We have

IFlls, < ;rl- fl _f (j F(449) - f(e) dt) P1=1) i dr

; 1—-2rcost + r2 1-7

=2 [ [ 1) - g

1 1 p(1—1)
x(!l—?rcost+r2. 1-r dr)dOdt.

Using Lemma C we get

bl ™ i(t+6)) _ i6
IFlls, < < f ['f(e t)2 SN oty doar,

that is, ||F||s, < C||f||a,, where C is an absolute constant. So Theorem B
is proved.

LEMMA D. If f is in Lip p, that is, |f(z + k) — f(z)| < Mp(h), then

IF’(z)ISCp(IIT—:) where F(z) = 211r f:u+zf( Mdt, z=re",

and C is an absolute constant.

P roof. Usually the least constant M in the definition of Lip p is denoted

by ”f"Lip P
Arguing as in the proof of Theorem B, and using the fact that

1 C
<
1-2rcost+72 =~ (1-r)2412
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where C is an absolute constant,0 < r < 1 and 0 < |t| < 7 (see [13, p. 96]),
we get

, 1 il f i(t+9) f i6 t
IF(z)S;[ (e77) = SN 4 Cf(l (U

—2rcost + r? -r)2 412

Taking s = t/(1 — r) we get

: c_ "7 p(s1- 1))
(+%) IF'()l € 7= 0f Ensraranll

Let us estimate this last integral:

n/(1-r1) 1 r/(1-r)
p(s(1—r)) p(s(1—-1)) , _
of T de= (of+ lf ) T ds=A+B.
Using (ii), we have p(s(1 — 7)) < p(1 —7) and so A < £p(1 —r). Next,
n/(1-r) n/(1-r)
p(s(1—r)) p(s(1-1))
B < lf 's—ds = (l ) lf W ds

—(1-1) f p(t)dt

Therefore using (v) we get B < Cp(1 —r).
Putting the estimates for A and B in (%) we get |F'(z)| < Cﬂll_:r—'l,
with z = re*® and C an absolute constant. So Lemma D is proved.

Let F(z) Y oo bnz™ be the analytic extension of a function f in A,
and let g in Lip p have analytic extension G(2) = Y oo ; ap2™.

Define a linear functional on A, by

n=0

2n
¥o(f) = lim [ F(re®®)G'(re=*) ds.
0

We claim that ¢, belongs to A} (the dual of A,). In fact, one can easily
see that

2x
. 10 —i8
ln_qi !F(re )G'(re™*?) d6

1 2n
= F(0)G'(0) + 2 f f F'(re'®)G'(re~%)e'® df dr .
0 o
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Now as A, is continuously contained in §, by Theorem B and |G'(re™*%)|
< C||9]lLippP(1 = 7)/(1 — ) by Lemma D, we get

[¥5(H)] < ClIFlls, llgliips < Cliglivipoll Flla, »

that is, ¥4 is a bounded linear functional on A,.

This last inequality, which is some sort of Holder’s inequality, tells us
that, for any fixed g in Lipp, 9, is a bounded linear functional on A,,
that is, Lip’ p is continuously contained in A7, written Lip’p C A7, where
Lip’ p = {¢';9 € Lip p} and the dash means derivative.

One can easily see that the dual space of A, is Lip’ p, see Theorem 4.1
in [4, p. 188]. Therefore as A, C A, we have A} C Lip’p. Thus as A, C
A, C S, we have the following duality theorem.

THEOREM E (Duality Theorem). The dual spaces of A,, A, and S, are
all equivalent to Lip' p, i.e. A} = A% = S5 = Lip' p. Moreover, the duality
pairing is given by the functional 1,.

It is not difficult to use the Hahn-Banach Theorem to show that A, is
dense as a subset of both A, and S,, therefore we have the following situa-
tion: A,, A, and §, have the same duals, moreover the inclusion mappings
I:A,—A,andI: A, — S, are dense and continuous. It follows that A,,
A, and S, are equivalent as Banach spaces. Thus we have proved the main
result in this paper:

THEOREM F. Let p : [0,00) — [0,00) be a continuous function satisfying
conditions (i)-(v). Then
2r

1
feEA, & feA, & FeS, where F(z)=2—1réf

eit+z
eit — 2

f(et)dt.

Moreover, the norms ||f||4,, ||flla, and ||F||s, are equivalent.

Comments. The space A, is called the block decomposition of the
weighted Besov space A, or §,.

For p as in Theorem F, we obtain Theorem 9.2, p. 207 in [4] with very
simple calculations.

For p(t) = t'/P, 1 < p < 0o we obtain the main result in [2], which is
Theorem C, p. 684.

We would like to thank Professors Jack Brown and Gary Sampson with
whom we had some useful conversations.
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