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1. Introduction. Let € be the category of finite chains with 0 <1
and isotone maps which preserve 0, 1; and let # be the category of non-de-
generate Boolean algebras and Boolean homomorphisms. One of the objec-
tives of this paper*is to prove that the category # of Post algebras and
Post homomorphisms is equivalent with # X € (Theorem 2.2). As an
application of this result we will exhibit the injectives and projectives
in #, and also the essential injective extensions of objects in Z. As we
will see the concept of a Post algebra leads to a study of the coproduct
of a Boolean algebra B and a chain C in the category of distributive lattices
with 0, 1. These coproducts could be considered as a generalization of
Post algebras (see also Chang and Horn [3], Traczyk [11], Dwinger [5]).
It will be shown (Theorem 3.2) that such a coproduct is isomorphic with
a subdirect of C° for a suitable set S. In fact, this subdirect product is
characterized by being the lattice generated by the set of diagonal elements
in 0% and a Boolean sublattice of C5. This result will, in particular, yield
a new structure theorem for Post algebras. It also provides an easy cha-
racterization of Post algebras whose center is a complete field of sets.

It was proven (Dwinger [4], also see Rousseau [10]) that for every
Post algebra P the distinguished chain of constants is uniquely determined.
The last section deals with the question of whether this uniqueness theorem
also holds if the distinguished finite chain is replaced by an infinite chain,
i.e., for coproducts B * C, where C is infinite. We will answer this question
in the negative but we will present a result which improves the uniqueness
theorem for Post algebras.

We recall some definitions.

Definition 1.1. A Post algebra P is a distributive lattice with 0,1
which contains a finite chain C = {¢p, ..., €, _,}, where 0 = ¢, < e, < ...

* The research and preparation of this paper was partially supported by the
National Science Foundation Grant GP 11893.



16 R. BALBES AND PH. DWINGER

<e,,=1, n>2, and such that each xeP can be uniquely repre-

n--1

sented in the form « = )’ a,e; where a,>a,>... > a,_, and a,,...,a, ,
i=1

are complemented in P. Such a representation is called monotonic.

The uniqueness theorem, to which we referred above, states that if P
1s a Post algebra, then there is exactly one chain in P satisfying the condi-
tions on C in Definition 1.1. Thus, we refer to C as the chain of constants
in P and say that P is a Post algebra of order n, where |C| = n. The set
of complemented elements of P will be referred to as the center of P.
More generally, the Boolean sublattice of all complemented elements
of a distributive lattice with 0 < 1 is called the center of L. .

Since most of our work will be in the category 2 of distributive lattices
with 0 << 1 and lattice homomorphisms which preserve 0, 1, we will refer
to objects and morphisms in £ as lattices and homomorphisms. Thus
homomorphisms will always preserve 0,1 and sublattices will mean
(0, 1)-sublattices, etc. We stipulate that all chains be in 2. The copro-
duct (= free product) of any two objects L, and L, in 2 exists and will
be denoted by L, * L,. The corresponding homomorphisms of L, and L,
in L, * L, are injections. We will often identify L, and L, with their
images in L, * L,. Thus, if we write L = L,* L, without specifying what
the injections are, we will simply mean that L, and L, are sublattices
of I and that the corresponding injections are the inclusions L, - L, *L,,
¢t =1, 2. It is therefore also clear what is meant by the statement that L
is the coproduct of sublattices L, and L,. It is known (Holsztynski, .cf.
[10], p. 134; also Griatzer and Lakser [8]) that L = L,* L, if and only
if L, v L, generates L and for a,, b,eL, and a,, b,eL,

(1) a,a, < b,+b, implies a, < b, or a, < b,.

Finally, whenever we talk about coproducts in the sequel we will
mean coproducts in 2.

It was proven in Rousseau [10] that if P is a Post algebra with center
B and chain of constants C then P = B*(C. Conversely, if B is a Boolean
algebra and C a finite chain then B*( is a Post algebra in which C is the
chain of constants in B*(C. It therefore follows from (1) that LeObj.2
is a Post algebra if and only if L is generated by the union of its center B
and a finite subchain that satisfies

(1) aeB;c,deC,ac<d implies a =0 or ¢ <d.

Definition 1.2. Let P and P, be Post algebras with chains of con-
stants C, and C,, respectively. A Post homomorphism h: P — P, is a lattice
homomerphism such that A(C) < C,.

Post homomorphisms can be realized as the homomorphisms asso-
ciated with a certain class of structures (see Gritzer [7]) of type
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{{2,2,0,0),(1>). Indeed, a Post algebra P with chain of constants
C = {egy ...y €,_;} I8 a structure {L; {+,+,0,1}, {R}), where (L; +,-,0,1)

is a lattice, B = {(¢;)|? = 0,...,n—1} and each ze¢L has a monotonic
n—1

representation ) a;¢;; a5, ..., a, in the center of L. As we shall see in

i=1 .
the next section, however, it appears to be more useful to consider Post
algebras and homomorphisms from a categorical point of view.

2. The category of Post algebras. We first prove a lemma (cf. Corol-
lary 3.3).

LEMMA 2.1. Let BeObj.# and CeObj. €. Then B s the center of
B=*C.
Proof. Let B’ be the center of B *(. Clearly, B < B’. For the converse
inclusion, suppose C = {€g, ..., €,_,}, Where 0 = ¢, < ;< ... < €,_, =
n—1
and a¢B’. Now a and its complement @ can be written in the form a = )’ a,e;
n—1 i=1

and b = )] bse;, respectively, where a,, b, ¢B.
i=1

For each 7e¢{l1,...,n—1},

0 = ab > (a,6) (b,_,6,_,) = a;b,_,¢;.

So, by (1),
(2) ab, , =0 fori=1,...,n—1.
Next,
n—2 n-—-2
1=a+b<(d) o) +an () &) +bas = enstanytbos,
=1 =1

which implies
(3) an—l+bn—l = 1.
Combining (2) and (3), we have

ae, <b, 6, ,=a,, @(#F=1,...,n0—1)
and so '
n—1
a=) ae=a, .
=1
Hence aeB.
THEOREM 2.2. The categories P and % X € are equivalent.
Proof. We define (covariant) functors &: # > #x € and ¥: #X €
— Z asfollows. For every P ¢Obj. Zlet ®(P) = (B, (), where B is the center
of P and C is the chain of constants in P. If h: P — P, is a morphism of 2,
&(P) = (B, 0), &(P,) = (B,, 0,), define ®(h) = (h,, hy), where h, and h,
are the restrictions of » to B and O, respectively. It is obvious that @ is

2 — Colloquium Mathematicum XXIV.1
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a functor. Next, let (B, 0)eObj. #x €. Let ¥ (B, C) = B*(C, where, in
accordance with our convention, B *C( is the coproduct of the sublattices
B and C and where the corresponding injections are the inclusion maps.
Then ¥(B, C) is a Post algebra. Let h = (hy, h,): (B, C)— (B,, C,) be
a morphism in #x €. Let ¥(h): ¥ (B, C) - ¥(B,, C;) be the uniquely
determined Post homomorphism such that ¥ (k)|B = h, and ¥ (h)|C = h,.
Again it is obvious that ¥ is a functor. Now let A: P — P, be a morphism
of #, ®(P) = (B, (), ®(P,) = (B;, ;). Then it follows immediately
from equalities P = B*xC and P, = B,*C, that ¥(®(P)) =P and
¥ (®(P,)) = P,. Moreover, ®(h) = (hy, h,;) and hence ¥(®(h)) = h. Fi-
nally, let I = (hy, h,): (B, C) - (B, (,) be a morphism in #x €. It
follows from Lemma 3 that ®(¥(B,C)) = (B,C) and (¥ (B, (,))
= (B,, C,) and then from the definition of ® and ¥ we have @ (¥ (h)) = k.
This concludes the proof of the theorem.

It is now easy to prove

THEOREM 2.3. A Post homomorphism is monic (epic) if and only if
it 18 ome to ome (onlo).

Proof. Let B; and C; be the center and chain of constants of P;,
¢ =1,2,and h, = h|B,, hy = h|C,. If h is monic (epic), then (h,, h,) is
monic (epic) by Theorem 4, and so h, is monic (epic) in # and h, is monic
(epic) in €. But it is known that in # and ¥ monic and epic coincide with
‘one to one’ and ‘onto’, respectively. Now if %, and h, are onto then, since
hy(B,) U hy(C,) = B, U C, generates P,, h is onto. On the other hand
suppose h; and h, are one to one,

are monotonic representations and

n--1 n—1
Z hi(a;)hy(e;) = Z hy(b;) ho(e;).
i=1 i=1

Since the same members of C, appear and are strictly increasing on both
sides of the expression, it is easily seen from Definition 1.1 that hk,(a;)
= hy(b;) for 4 =1, ..., n. Since h, is one to one it follows that h is one
to one. The converse is immediate.

LEMMA 2.4. Every object in % s both projective and injective.

Proof. Let C, C,, C,e0bj. ¥. To show C is injective let h: C; - C
be a morphism and g: C, - €, a monomorphism. Then g is one to one
and the required morphism from C, to C is defined by

x— max {h(u)] ueC,, g(u) <2} for each zC,.
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Next, suppose h: C — C, is a morphism and f: C,— C, is epic. The
morphism from C to C,, which is required to show that C is projective,
is given by

x—> max{ueC,|f(u) < h(x)} for zeC.

Let P be a Post algebra with center B and chain of constants C.
Because of Theorem 2.2, P is injective (projective) if and only if B is injec-
tive (projective) in # and O is injective (projective) in €. Now the injecti-
ves in B are exactly the complete Boolean algebras, where as the best theo-
rem that exists currently about projectives in % is that they include all
countable Boolean algebras. Thus:

THEOREM 2.5. Either of the following two conditions are necessary and
sufficient for a Post algebra P to be injective:

(1) P is complete.

(ii) The center of P is complete.

If P is countable, then it is projective.

Proof. The proof is immediate from the above remarks and the fact
that (i) and (ii) are equivalent [6].

We recall the following definitions (cf. [2]). The setting is an arbitrary
category 7.

Definition 2.6. A monomorphism f: A — B is essential, and B is
an essential extension of A, provided that each morphism ¢g: B — C with
the property that gf is a monomorphism is itself a monomorphism. If f is
not an isomorphism, then B is a proper essential extension.

Using straightforward categorical arguments, it is easy to prove
that for categories &7, and &/, a morphism h = (h,, h,): (4,, 4,) > (4, 4,)
in o/, X .7, is essential if and only if h,: A, > A, and h,: A,—~ A, are
essential.

THEOREM 2.7. For Post algebras P, and P,, the following are equivalent.

(i) P, i8 an injective essential extension of P,.

(ii) The orders-of P, and P, are equal and the center of P, is a normal
completion of the center of P,.

(iii) P, s a normal completion of P,.

Proof. Let B; be the center of P, and let C; be the chain of con-
stants in P; for ¢ = 1, 2. Then, by our previous remarks and Theorem 2.2,
(1) holds if and only if B, is an injective essential extension of B, (in %)
and O, is an injective essential extension of O, (in €). But a finite chain
has no proper such extensions and the injective essential extensions of
Boolean algebras are their normal completions [1]. Thus, (i) and (ii) are
equivalent. The equivalence of (ii) and (iii) follows immediately from
Theorem 2.6 in [6] and the uniqueness of the normal completion.
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3. Coproducts of Boolean algebras and chains. Since Post algebras
are the coproducts of a Boolean algebra with a finite chain, it seems
natural to investigate the structure of coproducts of Boolean algebras
with arbitrary chains (in 2). The relation that exists between Post algebras
and coproducts of a Boolean algebra and a finite chain is reflected in the
property that every element of such a coproduct has a unique representa-
tion in the sense of Definition 1.1 (Rousseau [10]). This is a special case
of the following theorem

THEOREM 3.1. A lattice L is the coproduct of sublattices B and C, where B
i8 a Boolean algebra and C is a chain, if and only if each x e L can be uniquely
represented in the form "

(4) x =Zaiei, n=1,
~ ,

where {e;,...,6,} < C,{a;,...,a,} =B and 0 =¢,<...<e,, 1 =a,,
ay>...>a,>0.

Proof. For the sufficiency we need only prove (1’). Thus, suppose
ae < f, where aeB,{e,f} < C and f<e. Then 1-0+a-e =1:0 +af,
0 < e, so if 0 < f, then the unique representation hypothesis implies e = f,
a contradiction. But f = 0 implies 1 - 0+ae = 1+ 0+ O¢, and hence a = 0.

For the necessity, we suppose L = B*(C. If x = 0, we have the

n
representation # = 1 - 0. Now if # # 0, then « can be written as z = ) b;f;,
i=1
where b;eB, f;¢C. Since C is a chain, we can assume f, < ...<<f,. Also
we can assume b, >...>b, (cf. [11], p. 194). Now by dropping all
but the maximal members of {b;f;|¢ =1,...,n}, we see that = can be
written as

m

=Zb,-jf,-f, where 0 < f; <...<f,, and by >...>b, .

The required representation for x is therefore

m
xr = 1 ° O+ Zbl]f"'].
j=1

Finally, for uniqueness, let
n m
x Z ae; = 2 b; [
i=1 7=1

where n<m, 0 =¢,<...<e,,0=f,<...<fny 1 =a4,a,>...>a,
>0 and 1 =b,,b,>...>b,>0. Then a, =b, =1 and ¢, =f, = 0.



Suppose a;, = b;, ¢, = f; for 1 <¢<k and k< n. Then

m

k
P R
A 1€ 2 fi b 2, by=e, +b;. 1
i=1

i=k+1

so, by (1), @, < byy,. Similarly b, ., < a;,,. Now

k+1 m
3

ak+1ek+1§2fi+ 2, b;.
=1 iSk+2

If k+1 = m, then this last inequality reads e, e;,, < fi, 1,80 €., ;< fii )5
if k+1< m, then we have a, ,e.,, < fr 1+ by o But a; , L by, or else
bii1 = @1 < byys, a contradiction; hence ¢, , < f,,,. Similarly, f. ., <eé.,,.
Hence a;, = b, and ¢; = f; for ¢ =1, ..., n. Finally, if m > n, then

n
bn+lfn+1 < Z €; = €y 50 fn+1 < €y = fn?
t=1

a contradiction; so m = n and the proof is conmplete.

We will now present our main structure theorem for coproducts of
Boolean algebras and chains. First, an element z¢C®, where C is a chain
and S is a set, is called a diagonal element if x(s) is constant for each se .

THEOREM 3.2. Let B be a Boolean algebra and C a chain. Then B*C
is isomorphic with a subdirect product L of C° for some set S. Moreover,
L is a sublattice of C5 generated by a Boolean sublattice of C° and the set D of
diagonal elements of CS. Conversely, any sublattice L of C°5 which is gene-
rated by D and a Boolean sublattice B of C5 is the coproduct of D and B.

Proof. Let S be the set of prime filters in B. Define a homomorphism
hy: B— C® as follows. For each aeB,

hy(a) (F) ={(1) ii Zg} for each FeS.

Define h,: ¢ — C% by hy(c)(F) = ¢ for each FeS andceC. Let h:
B+*(C —-C® be the unique extension of h, and h, to B*C. Now suppose
h(x) < h(y), where z, ye B*(C. Then

n m
i=1 i=1
where @;, b;eB; e;, c;eC. We have for each ¢, j that h (a;)h,(e;) < hy(b;)+
+ hy(c;). Suppose a; < b;. Then there is a prime filter ¥ in B such that
a;eF,b;¢F. So

€ = (hl (“i)hz(ei)) (F) < (hl(b,')—i—hz(cj)) (F) = ¢.
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Thus a;e; < b; +¢; for each ¢, j and so # < y. Hence A is one to one.
Clearly, D = h(C), h(B) is a Boolean sublattice of B and D U h(B) gene-
rates h(B*(C). In particular, h(B*C) is a subdirect product of B. Con-
versely, if B is a Boolean sublattice of C°, then each ze¢C® is such that
x(F) is 0 or 1 for each FeS. Thus, suppose aeB;y,2eD and ay < 2. If
y K2, then, since y,z are diagonal elements, y(F)< 2(#) for each FS.
Thus, a(F)y(F) < 2(F) implies a(F) # 1,s0 a(F) = 0 for all ¥ and hence
a=20.

Theorem 3.2 yields a structure theorem for Post algebras. Namely

A lattice L is a Post algebra if and only if, for some finite chain C and set S,
L is a sublattice of C° which is generated by D and a Boolean sublattice of C°.

The next corollary of Theorem 3.2 is a generalization of Lemma 2.1.

COROLLARY 3.3. If B is a Boolean algebra and C a chain, then B is
the center of B*C.

Proof. Suppose a is an element of the center of B*(, hence & (a)

is in the center of C° and thus h(a) (F) = 0 or 1 for all FeS. Let a = Za.iei
i=1

be the representation of a in the sense of (4). We may assume a # 0,
hence n > 2. Suppose n > 2. Since a, > a; > ... > a, >0, there exists
an F,e8 such that a,eF,, a,¢F, for 3 < i < n. Hence

h(a) (Fy) = D ha(a) (Fy)e; = e #0,

implying e, = 1 which contradicts » > 2. Thus » = 2 and a = a,e,, a, > 0,
e; > 0. It follows from (1’) that a = a,eB.

For coproducts of a complete field of sets and a finite chain or equi-
valently, for Post algebras whose center is a complete field of sets, we
have the following structure theorem.

THEOREM 3.4. Let B = 24 be a complete field of sets and let C be a finite
chain. Then B+C is isomorphic to C*. Conversely, if C is a finite chain
and A a set, then O is the coproduct of its center and C. Hence a Post algebra
8 isomorphic to C4, where C is its chain of constants and A is a set, if and
only if the center of P is a complete field of sets.

Proof. First suppose B = 24 and C is a finite set. We consider B to
be the set of all subsets of the set A and alter the proof of Theorem 3.2
as follows. Define h,: B — C4 by

1 if {a}ca )
h, () (a) =.{0 it {a} & w} for xeB, aed;

k, is a homomorphism, for F, is a prime filter in B. h,: C — (4 is defined
by hy(c) (a) = ¢ for each ceC, aeA. Let h: B*C —> C* be the extension
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of h,, hy to B*(C. The proof that h is one to one is essentially the same as
in Theorem 3.2. Finally let feC. For each ceC, set f= {acA|f(a) = c}.
Then

oo 1 if f(a) =€)
hi(f€) (a) = {0 otherwise }

hence

B Y10 e)(a) = ) (ha(f)he(0)) (@) = f(a).

ce( ce(!

Thus B*C ~ C-.

For the second part of the theorem, observe that the diagonals of
¢ form a finite chain and that the center consists of all feC! with f(a)
=1 or 0 for all aed. It follows from (1) that 04 is the coproduct of its
center and C.

The following corollary is an immediate consequence of Theorem 3.4,

COROLLARY 3.5. Let B be a finite Boolean algebra, B = 2"™. Then for
every finite chain C, BxC ~ C™. If P is a Post algebra of order n whose
center B is finite, B = 2™, then |P| = n™ (see also [9], p. 186).

4. Uniqueness of chains. One of the. significant features of a Post
algebra is the uniqueness of the chain of constants. Stated in terms of
coproducts it says that the class &, of finite chains C with the property
that Bx(C = B*(, implies C = (, for all Boolean algebras B and finite
chains C,, contains all finite chains. This formulation raises an interesting
question concerning uniqueness for coproducts of Boolean algebras and
arbitrary chains. Precisely, the problem is to determine the class & of all
chains C with the property that BxC = B*(’ implies C = (C’ for every
Boolean algebra B and every chain C’. We will prove in this section that &
certainly does not contain all chains (Theorem 4.2) but on the other
hand, & contains all finite chains (Theoren: 4.1). This last result is obviously
an improvement of the uniqueness property mentioned above. A further
investigation of the class will be the subject of a subsequent paper.

THEOREM 4.1. All finite chains belong to &.

Proof. Suppose C is a finite chain, C’ an arbitrary chain and B a Boo-
lean algebra such that B*(C = Bx*(C’. We must show C = C’. Clearly

every element of (' can be expressed in the form Y a,c;, where a,eB,
=1

c;eC’ for i =1, ..., n. But C is finite and hence there is a finite subchain

C* of (' such that B U O generates B*(. Then obviously B*C = B*C*,

But € and C* are finite, so B*(C and B*C™" are Post algebras; hence C

= (0T < (. Now let ceC’ ~ (. Then C** = C U {c} is a chain that gene-

rates B*C. Thus B*(C = B*(C**, This again implies, by the uniqueness
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property for Post algebras, that C = C**. This contradiction establishes
the result.

THEOREM 4.2. Let C be a chain with a subchain S that satisfies
(i) #8<C~{0,1}.
(ii) z,ye8,z <2<y implies ze8.
(iii) There is an isomorphism f: 8 — 8 such that x < f(x) for all xS
or f(x) < x for all xeS.
Then C¢ 6.

Proof. Suppose z < f(x) for all x¢S. Let B # 2 be a Boolean algebra
and aeB ~ {0,1}. Set d, =x+ af(z) for each ze¢S and 0, =(C~8) v
U {d,|xe8}. We will show that C, is a subchain of the coproduct B*C
such that B*x(C = B*(, but C # C,. Our first step is:

C, is a chain (with 0,1): Clearly {0,1} < C, and «, v in C, are compa-
rable if they are in € ~ 8. Also if #, yeS and x < y, then d, < d,. Finally
suppose ueC ~ 8§ and v = d, for some xeS. If v < 2, then v < x4 af(x)
= d_, and if ¢ < u, then u < f(x) by (ii), so f(z) < » and thus d, = =+ af (x)
< u.

B u C, generates B*(C: Tt is -sufficient to show 8§ is a subset of the
lattice generated by B u C,. So let ze8, then by (iii), # = z+f '(x
= awv+f'(x) +ax = @(x+af () +f ' («) + ax = ad,+d;~1, which is in
the sublattice generated by B v C,.

B*C = B*(C, and C # C,: For the first part, it suffices to prove
that if p,qeC,,beB and bp < q, then b =0 or p < q. Suppose b # 0.
The result is immediate if p, geC ~ 8. There are three remaining cases.
First let peC ~ 8§, q = d, for some xeS. Then

bp < z+ af(x) < f(#), s0 p < f(2).

By (ii) <KL p, 50 p < ®# < d, = q. Next suppose p = d, for some xe8
and geC ~ 8. Then

< br+baf(r) =bd, < q

implies # < ¢, so q{ f(@).
Thus, f(r) < ¢ and x4 af(x) < ¢. Finally, assume p = d, and ¢ = d,,
where x, yeS. Suppose p £ ¢q. Then 2 < y. Now

bx <br+abf(r)<bd, <qg<y+af(y) <y+a.

So br<a+y implies b<a and bf(r)<y+f(y) =f(y) implies
f(@) < f(y). But f is an isomorphism so = <y, a contradiction. Hence
B+*(C = B*(C,. Now let xeS8 < C. Then d,eC,. To show d_¢C suppose
¢ =x+af(r) for some ceC. Then x < ¢ and ¢ <2+ a and hence ¢ = .
Also af(x) < ¢ implies f(z) < ¢ < &, a contradiction. This completes the
proof.
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Example. Let G be any subgroup of the additive group R of the
reals, G # (0). Consider the chain G4 obtained by adjoining — oo and + oo
to G. Let 8 = G. Then § satisfies the conditions of Theorem 4.2. Indeed,
pick ae@G, a # 0, and let f: § -8 be defined by f(r) =a+a,x8. It
follows that G# ¢ &. In particular RA ¢ & and therefore no closed interval
[a, b], a # b, of R belongs to &.
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