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0. Introduction. The T'(b) theorem of David, Journé and Semmes
[DJS] provides a criterion for the L? boundedness of singular integral op-
erators. Our purpose is to establish a closely related criterion which was
suggested by a question about analytic capacity of subsets of the complex
plane. Like the T'(b) theorem, our criterion applies on arbitrary spaces of
homogeneous type, a general setting for singular integral theory introduced
by Coifman and Weiss [CW]. Its proof relies on a stopping-time argument;
such arguments appear very frequently in real and harmonic analysis on Eu-
clidean space, and often involve dyadic cubes. Spaces of homogeneous type
come, in the abstract, with a bare minimum of structure, and so far as we
know, no suitable analogue of the system of Euclidean dyadic cubes has yet
been constructed in full generality. So our second purpose is to construct
them. Lastly we shall give two applications, concerning the relation be-
tween positive analytic capacity and L? boundedness of the Cauchy integral
on certain subsets of the complex plane. We shall also indicate the connec-
tion between our theorem and work of David [D1] concerning the Cauchy
integral on certain curves in the complex plane, which helped to motivate
it.

It is a pleasure to thank Guy David and John Garnett for very helpful
conversations, and Peter Jones for insisting on the elimination of an extra
hypothesis from the main theorem.

A constant with a subscript, such as A; or C3, will retain its value
throughout the article, while constants such as C may change from one
occurrence to the next.

1. Review. Let us recall several standard definitions. A quasi-metric
p on a set X is a function from X X X to [0,00) satisfying the same
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conditions as a metric, except that the triangle inequality is weakened
to

(1.1) p(z,y) < Ao(p(z,2) + p(2,y)) forallz,y,z€ X

where Ay < oo is independent of z, y, 2. Given a quasi-metric, we set
B(z,r) = {y € X : p(z,y) < r}. Of course, a set 2 C X is defined
to be open if for each z € 2 there exists € > 0 such that B(z,¢) C 2.
Unfortunately, when Ag > 1, it does not follow that the balls B(z,r)
are open. However, Macias and Segovia [MS] have proved that given any
quasi-metric p, there exists a quasi-metric p’, equivalent in the sense that
there exists ¢ € (0,00) such that for all z,y € X, ¢™1p(z,y) < p'(z,y) <
cp(z,y), such that the metric balls defined with respect to p’ are open.
In all our analysis, only the order of magnitude of p(z,y) will be signif-
icant, so it will be no loss of generality to assume that metric balls are
open.

DEFINITION 1. A space of homogeneous type is a set X, equipped with
first, a quasi-metric p for which all the associated balls B(z,r) are open, and
second, a nonnegative Borel measure p satisfying the doubling condition

(1.2) u(B(z,2r)) < Aju(B(z,r)) forallze X, r>0

where A; is finite and independent of z, r. It is also required that u(B(z,r))
< oo for all z, r.

Henceforth it is always understood that we are working on a space of
homogeneous type (X,p,u). We denote also by u the completion of the
original y. Define for any z,y € X,

A(z,y) = u(B(z,p(z,y))) -

It follows from (1.1) and (1.2) that A(y,z) is comparable to A(z,y), uni-
formly in z, y.

DEFINITION 2. A standard kernel is a function K : X x X\{z =y} - C
such that there exist £,6 > 0 and C < oo such that

|K(z,y)| < C/X(=z,y) for all distinct z,y € X
and such that

K(2,) - K(&'0)l + 1K (2) - K, )| < € (222))’

1
Az,y)

whenever p(z,z’) < dp(z,y).
Alternatively, one says that K satisfies the standard estimates.

Denote by A, the class of all bounded functions which are Holder con-
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tinuous of order a € (0,1], a Banach space under the norm

_ |f(z) - f(¥)|
Ifllaa = I fllze +it;r; FETCER

Denote by D, the subspace of all functions with compact support. Just
as the space of distributions D’ is defined on Euclidean space, we may in-
troduce the dual space D) consisting of all linear functionals ¢ from D,
to C with the property that for each bounded set £ C X, there exists a
finite constant Cg such that for all f € D, with support contained in F,
16 )| < Cellfll Aa- '

According to Macias and Segovia [MS], there exists a genuine metric
p' and exponent N such that p(z,y) ~ p'(z,y)" for all z, y. Therefore
nonconstant A, functions exist in profusion for all sufficiently small a, but
not necessarily for all @ < 1. This accounts for the restriction on a in
Theorem 8 below.

We denote by (h, g) the natural pairing of elements h € D’,, g € D,. T*
denotes the transpose of a linear operator, with respect to this pairing. By
a kernel we shall mean a locally integrable, complex-valued function defined
on X x X \ {z = y}. A linear operator T : D, — D!, is said to be associated
to a kernel K if for all f,g € D, with disjoint supports,

(Tf,9)= [[ K(z,9)f(v)9(z)du(z)dp(y).

For any L* function b satisfying |b(z)| > 6§ > 0 a.e. (du), one also has
the space D, of all functions by with ¢ € D,. It is naturally isomorphic
to D,, and we assign to it the corresponding topology. There is again the
dual space (bD,)’, and the pairing (h, g).

DEFINITION 3. A singular integral operator T on a space of homoge-
neous type is a continuous linear operator from b, D, to (b2D,)' for some
a € (0,1)], and some L* functions by, by satisfying |b;(z)], |b2(z)] > 6 > 0
a.e. (du), which is associated to a standard kernel.

An important and conveniently simple special case arises when K is and
antisymmetric standard kernel, that is, K(y,z) = —K(z,y), by = b, = b,
and an associated operator T is defined by

(1.3)  (T'(ber),be2)

=1 [ [ K(z, 9)b(@)bu)e1(v)ea(z) — e2(v)e1(2)] du(y) dp(z)
for 1,2 € D4. The definition is legitimat® because the integral converges

absolutely, a consequence of the standard estimates and Holder continuity
of ¢1, ¢2. See [DJS].
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DEFINITION 4. For a € (0,1), o € X, and 7 > 0, By z,,r is the set of
all f € D,, supported in {y : p(zo,y) < r}, for which ||f||L~ <1 and

|f(z) = f(W)] < v7%p(z,y)* forallz,ye X.

DEFINITION 5. A continuous linear transformation T : b;Do — (02D, )
is said to be weakly bounded (with respect to by, b;) if there exists C' < oo
such that for all zg € X, r > 0 and all 1,92 € By zq,r)

(1.4) (T (brp1), bapz)| < Cu(B(zo,T))-

Note that if T' is bounded on L? then
(T (b1p1), (b2p2))| < [ITIf - llpallzallp2l L2161 ] oo llb2 | o
< C||T||u(B(2o,7))!*p(B(20,7))!/
< C||T||u(B(=,71)),

so that L2 boundedness implies weak boundedness. In the case where T is
associated to an antisymmetric standard kernel by the procedure (1.3), a
straightforward computation shows that it is automatically weakly bounded
with respect to by, b whenever b, = b,.

DEFINITION 6. A locally integrable function f belongs to BMO if

IIflleMo = sup infu(B(z,7)™! [ |f(y) - c|dp(y)
z€X,r>0 ceC B(z,r)

is finite.

DEFINITION 7. A function b € L*°(X) is said to be para-accretive if
there exists § > 0 such that for all z € X and r > 0, there exist z' € B(z,r)
and ' € [ér, 7] such that

J b du(v)| 2 eu(B(',r")).
B(z',r'")
Note that u(B(z',7')) ~ u(B(z,r)), by the doubling property (1.1) of u.
Note also that for any para-accretive b, there exists € > 0 such that |[b] > ¢
almost everywhere, because of the validity of Lebesgue’s theorem on differ-
entiation of integrals on spaces of homogeneous type [CW].

The review concludes with the T'(b) theorem of David, Journé and Sem-
mes [DJS]:

THEOREM 8. Suppose that by, by are para-accretive functions and that T
is a singular integral operator, on a space X of homogeneous type. Suppose
that T is weakly bounded from b1 D, to (bsD,)', that a is sufficiently small,
arzzd that T'(b,),T*(b;) € BMO. Then T eztends to an operator bounded on
L*(X, p)-

a is required to be smaller than a parameter which depends only on A,.
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2. Pseudo-accretive systems and another T(b) theorem. One
last definition:

DEFINITION 9. A pseudo-accretive system is a collection of L™ functions
bg, one for each ball B = B(z,r) C X, satisfying for some C < oo, § > 0,

slize < C for all B,
| [ s dpl > §u(B) for all B.
B

If T is a singular integral operator and K the associated standard kernel,
we denote by T the operator from D, to D!, for any a, defined by

Tfx)= [ K(z,9)f(y)du(y).
p(z,y)>e
T* is called a truncated singular integral operator. Although T need not in
any sense be the limit of 7¢ as ¢ — 0, nonetheless boundedness of T' may
often be deduced, once the T'¢ are known to be uniformly bounded, as e — 0.
In particular, this is true when K is antisymmetric and T is associated to
K asin (1.3).
Our principal result is

MAIN THEOREM 10. Let X be a space of homogeneous type, and let T
be a truncated singular integral operator. Suppose there exist C < oo and
pseudo-accretive systems {b}, {b}} on X such that for all B,

1Tl £C, T (%)= < C.

Then T is bounded on L%(X,u), with an operator norm not ezceeding a
bound which depends only on Ag, A,, on the bounds in the standard estimates
of Definition 1 for K, on the constants in Definition 9 for {b}}, and on C.

In particular, the assertion is that for a fixed standard kernel, the oper-
ator norm satisfies a bound independent of the radius of truncation, e. The
hypothesis that K is a truncation of a standard kernel, is made for technical
reasons to ensure that 7'(f) is defined for various functions f which arise in
the proof. .

The formulation in terms of truncations is admittedly a bit unwieldy. In
the important special case of an operator associated to an antisymmetric
kernel as in (1.3), the operator is automatically defined on large classes of
functions. With some slight additional argument, the proof of Theorem 10
also establishes

THEOREM 10'. Let X be a space of homogeneous type and T a singular
integral operator on X, associated to an antisymmetric kernel by (1.3). Sup-
pose there ezists a pseudo-accretive system {bg} on X such that ||T(bp)||co <
C < oo for all balls B. Then T is bounded on L*(X).
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In the case of general operators, one might object that in order to ob-
tain boundedness of a singular integral by applying the theorem to its trun-
cations and then passing to the limit, one would need, for every ¢, two
pseudo-accretive systems satisfying the hypotheses; it would be preferable
to have two families which work simultaneously for all €. For the applica-
tions considered in this article, this will not be a problem. More general
considerations suggest that the same may happen if there are to be other
applications. For consider the maximal truncated operator

T* f(z) = sup |T*f(z)| .
e>0

The following inequality is due to Cotlar, and a recent discussion may be
found in [J]:

T*f(z) <CM(Tf)z)+C'Mf(z) forallz

where M is the appropriate analogue of the maximal function of Hardy and
Littlewood:

Mf(z) = supu(B(z,7)™ [ |f(y)ldu(y),
r>0 B(z,r)

C depends only on X, and C’ depends also on the L? operator norm of T
and on the constants appearing in the standard estimates for K. For us the
relevant consequence is that if T' is bounded on L?,b € L* and T(b) € L*°,
then also 7°(b) € L, uniformly in €. So if T is bounded and there happens
to exist a pseudo-accretive system for which T'(bg) € L* uniformly in B,
then the same pseudo-accretive system works for all the truncations T¢,
uniformly in €.

Theorem 10 is more flexible than the T'(b) theorem in that it permits
a pseudo-accretive system, rather than a single para-accretive function. It
happens that exactly this situation arises in our applications. The exis-
tence of a good pseudo-accretive system is a necessary condition for T to be
bounded on L2, for given boundedness, the existence of a para-accretive sys-
tem with T(bg) uniformly bounded in L* follows from functional-analytic
considerations — an application of the Hahn-Banach theorem and weak
type (1,1) estimate — which are well-known in the theory of analytic ca-
pacity.

Another possible advantage of Theorem 10 is that there is no hypothesis
of weak boundedness. On the other hand it is unsatisfactory in at least one
respect: it requires that T'(bp) be in L>®. One might hope that it suffices
to have

\T(bB)|lBMo < C



A T(b) THEOREM 607

uniformly in B, or even
”T(bB)”Ll(ﬁ) < Cu(B)

where B is the ball with the same center as B, but 24, times as large a
radius. The second line would be a consequence of the first. We have not
succeeded in modifying the proof to work under either hypothesis, and are
mildly skeptical of the validity of the theorem without the L* bound.

3. Dyadic cubes. Let (X,p,u) be a space of homogeneous type, as
defined above. The following sets QX are our analogues of the Euclidean
dyadic cubes; it may help to think of Q% as being essentially a cube of ball
of diameter roughly 6%, with center z£.

THEOREM 11. There erists a collection of open subsets {Q%X C X : k €
Z,a € I}, and constants § € (0,1),ap > 0, 7 > 0 and C;,C3 < oo such
that

1)  w(x\|Jei)=0 vk

(3.2)  IfL >k then either Q5 C Q% or Q5N QE =0.
(3.3) For each (k,a) and each £ < k there is a unique 3 such that
Q% CQf.
(3.4)  Diameter (Q%) < C,6%.
(3.5)  Each Q% contains some ball B(z%,ay6*).
36) p{zeQf: p(z,X\Qf) <t6*} < Crt"w(QK) Vk,a, Vt>0.
I denotes some (possibly finite) index set, depending on k. Dyadic

cubes have been constructed previously in a little less generality by David
[D3], and the formulation of Theorem 11 is based on his work.

We begin by establishing (3.2) through (3.5); these concern only the
quasi-metric space structure, and we have nothing at our disposal in the
proof but the quasi-triangle inequality. Let § be a small positive number to
be determined later, and for each k € Z, fix a maximal collection of points
zk € X satisfying

(3.7) p(z5,2) > 6% Va #p.
Of course, by maximality there is the reverse inequality
(3.8) For each k, for each z € X there exists a such that p(z, z¥) < 6.

These points zX remain fixed for the remainder of Section 3.

DEFINITION 12. A treeis a partial ordering < of the set of all ordered
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pairs (k, a), which satisfies

(3.9) (k,a) < (L,8) = k>¢.

(3.10)  For each (k,a) and £ < k there exists a unique 8 such that
_ (k,a) < (¢,8). |

(3.11) (k&)< (k—1,8) = p(zk257") < 8%1.

(3.12) p(zf,,zz‘l) < (240)716%! = (k,a)<(k-1,8).

LEMMA 13. There ezists at least one tree.

Proof. For each (k,a), there exists at least one 3 for which p(z% zﬁ'l)
< 671, by (3.8). And there exists at most one § for which p(z",zﬁ <
(2Ao)‘16" 1. For if z5~! is another such point, then p(z5~',2z571) <
Ao(240)"1(6%1 + 6%-1) = §*-1, contradicting (3.7).

The partial ordering in constructed according to the following rule: for
each (k,a), check whether there exists 3 such that p(z%, zp ~1) < (24,)™!

X 651, If so, decree that (k,a) < (k — 1,8), and also that (k,a) is not
related to any other (k — 1,7). If no such good S exists, then select any 8
for which p(z%, 25~1) < 6¥~1, and decree that (k,a) < (k — 1,) and is not
related to any other (k — 1,7).

Finally, extend < by transitivity to obtain a partial ordering. It is clear
that all four clauses of the definition are satisfied.

Now for the dyadic cubes. Fix a tree, and let ap € (0,1) be a small
constant to be determined.

DEFINITION 14.
Q= |J B(zh a6Y).
(¢,8)<(k,a)

Certainly each Q£ is open, and (3.5) holds. To begin verifying the other
conclusions of Theorem 11, note that

(3.13) (,8) < (k,a) = p(25,25) < 2406%.

For there exists a chain (k,a) = (k,7) > (k+1,m1) > (k+2,72) > ... >
(¢,8). Then
p(z5,25) < Aop(z&, 25) + Aop(2h}1, 25) < Aob* + Agp(2EHY, 25)
< Ao8* + AJp(=4F, 25F%) + AR (p(25F2, 25)
< Agb* + AZEFHY 4 AZp(2EH?, 28)
< Agb* 4 AZ6FF 4 A36FY 4 .
= Ao6* /(1 — Agb) < 2A6%,
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requiring é to be chosen smaller than (249)~!. An immediate consequence
is (3.4), with a constant C; which depends only on A,.

LEMMA 15. If Q5 N Qf # 0 then o = .

Proof. Suppose that z € Q% n Qz. Then there exist (m,v) and
(n,0) such that (m,7) < (k,a), (n,0) < (k,B), and z € B(2T,a06™) N
B(z7,a06™). Hence p(27',27) < Aoaoé™ + Aoagd™ < 2A¢aob™, supposing
without loss of generality that m > n.

Now consider two cases. If m = n then by requiring ag to be so small
that 24040 < 1, we obtain p(27*, 2}) < 6™, contradicting (3.7). On the other
hand, if m > n, there is a unique z3*! such that (m,v) < (n+ 1,)). Then,
using (3.13) in the second line,

P(z;+1’ zz) < Aop(zi‘“a z"yn) + AOP(Z‘T’ zy)
< A02A06"+1 + Ap240apé™ = 2A(2)(6 + ao)6" < (2Ao)_16n

provided that § and ag are chosen to be sufficiently small. Because of (3.12),
this implies that (n + 1,A) < (n,0). Then (m,y) < (n+ 1,)) < (n,0) <
(k,B). Since also (m,v) < (k, @), we conclude by virtue of (3.10) that a = 3.

Conclusion (3.2) of the theorem follows at once. For if £ > k and Q4 N
Q% # 8, choose 7 so that (¢,8 < (k,7), whence z§ C Q%. Then QXNQ% # 9,
s0 7 = a by Lemma 15. Thus Q§ C Q%.

(3.1) is easy to check. Fix k and let E = |J, Q%. Given any z € X and
any n, there exists z%; such that p(z,z2) < 6™. If n > k then B(22,a0é™) C
E. Also, by the triangle inequality, B(z%,a96™) C B(z, Ao(1+a0)é™), which
we call B. Note that u(B(z},a0é™)) > cu(B) by the triangle inequality and
the doubling condition (1.2), where ¢ € (0,1] is a constant depending only
on Ag, A;. In other words,

#ENB)/u(B) 2 ¢>0.
Letting n — oo we find that
limsup u(E N B(z,r))/u(B(z,7))>c¢>0 Vze X.
r—0 .

By Lebesgue’s theorem on differentiation of the integral, E therefore has
full measure, as desired. Let us permanently delete from X the null set
Ue(X \ U, Q%). Some of the zX¥ may conceivably be deleted, but that does
no harm, and we may continue to use them in our reasoning.

Condition (3.6) asserts that the mass of a cube is never too strongly
concentrated near its boundary, hence that the characteristic function of
a cube is in a sense somewhat smooth. It was introduced by David [D3]
and plays an essential role in applications of the dyadic cubes to singular
integral theory. That it should be attacked by way of Lemma 17 below, was
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suggested to us by David. First, we shall need a technical improvement on
(3.5).

LEMMA 16. Set C3 = (4A3)7). If 8, ao are sufficiently small, then for
all (k, @), B(z§,C36%) C Q%.

Proof. Suppose z € B(zX,C36%). Suppose that z ¢ QF, so that =
belongs to some other Qg. Then there exists (¢,7), £ > k, such that

z € B(2!,a06"% and (¢£,7) is not less than or equal to (k,a). Again let
us distinguish two cases. If £ = k, then

(25, 26) < Ao(p(25,2) + p(z, 25)) < Ao(aoé’ + Caé*) < 6

since apAdp < 1/2, AoC3 = (440)~! < 1/4 < 1/2. Since £ = k, this
contradicts (3.7).

On the other hand, if £ > k, then there exists (k+ 1, o) which is > (£,7).
Hence p(z,z5+1) < C16%+!. Therefore

Pz, 25) < AoCr8**! + Aop(w, z5) < AoC18*T! + AgCat"
= (ApC16 + A()Cg)(sk < (ApCh6 + (41‘10)-1)6'c < (2Ao)—16k ’

provided that é is small enough. By (3.12) this implies that (k + 1,0) <
(k,a), whence (¢,7) < (k, a), a contradiction.

LEMMA 17. For any € > 0 there ezists T € (0, 1] such that for every Q%,

p{z € Q5 : p(z, X\ Q) < 78} < en(QF)-

Proof. Write Q = QX. Let N be a positive integer, large enough to
fulfill a condition to be imposed later, depending on €. Let 7 be small and
for the moment, fix a point = € Q satisfying p(z, X \ Q) < T6*.

We claim that if 7 is sufficiently small, there exists o such that
(k+ N,o0) < (k,a) and p(z,25tN) < C16%+N. Indeed, there exists (£, 8) <
(k,a) with z € B(z5,a06*). The last lemma says that C36° < p(25, X \ Q),
while on the other hand

p(z5, X\ Q) < Aop(z5,2) + Aop(z, X \ Q) < Aoagb® + Agré* .

Hence (C3 — Agag)é? < Agré*, and provided that ag and T are chosen
sufficiently.small (recall that C3 depends only on Ay), this forces £ > k+ N.
Next, choose o so that (£,3) < (k+ N, o). Then z € Q5N s0 p(z,25+N) <
C16%+N by (3.4), as desired. Since Q5+" intersects Q%, (k+ N,0) < (k, ).

Let z continue to be fixed. There is a unique chain
(k+N,0)=(k+ N,0k4nN) < (k+ N - 1,0k4n-1) £ ... < (k,0k) = (K, ).

To keep the notation in check we temporarily write 27 for zg,..
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We next claim that there exists £; > 0, depending only on Ag, A;, such
that p(z7,2') > £167 whenever k < j < i < k+ N. For if not,

p(2, X\ Q) < Aop(z,X\ Q)+ Aop(z’,2)
< Apré* + A?)P(zj’ 2) + A?)P(ziv z)
< Ap7é* + Ale 67 + ALCH6*.

This last is < C3687 if T, €1, 6 are chosen to be sufficiently small, depending
only on N and on Ag. But the last lemma implies that B(z7,C367) C Q, so
this is a contradiction.

Now we allow z to vary within E = {z € Q : p(z, X\Q) < 76*}. To each
such z is associated a chain of pairs (j, 8(z,j)) as above,k < j < k+ N. Let
S; be the collection of all points zz’,( z.4) thus obtained, taking the union over
all z € E. If ¢, is a sufficiently small constant, then forany k < ¢, j < k+N,
for any z € S; and z' € S;, B(z,626°)NB(2',€267) = ), by the last paragraph.
Set G = U,¢s, B(2,€267).

For any k < j < k + N, we have

wE) <p( U BxCo*M)) < T wBz Gkt

ZESk4N ZESk4N

<C Y WB(zeat*N)=35 Y u(B(ze8N))
-ZESk4N WES; z2ESk 4N, 25w

<C Y wBw,C8) <C Y u(B(w,e:8) = Cu(G;y),
wES,- wes,-

where we have abused notation by writing z < w to mean that the corre-
sponding ordered pairs (7,7) are related by <. The first inequality holds
by the first paragraph of the proof. The second is trivial. The third is an
application of the doubling property (1.2), as is the last. The equality in the
second line follows from the disjointness of the balls B(z,¢567), as does the
equality in the last line. The first inequality in the third line follows from
(3.4) and disjointness of the balls.

To finish the proof note that since the G; are pairwise disjoint,

k+N
w@) = Y u(Gj) = NC™'u(E).

i=k
It suffices to choose N > Ce~! to obtain u(E) < eu(Q).

Proof of (3.6). For any Q% and any integer j > 0, set
E;(Q%) ={Q5" c Qk: p(QFY, X\ QF) < Cyb*+i}
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where C, is a large constant. Also let

ei(Q*)={z: z € Qz” for some Qz'” € E;(Q%)}
be the underlying point set. It was shown in the second paragraph of the
proof of Lemma 17 that for z € Q%, p(z, X \ Q%) < 76* implies = € ¢;(Q%)
where §7t% ~ r6*, provided that C, is taken to be sufficiently large. Con-
versely, if z € €;(QF) then p(z,X \ Q%) < C6*+J by the triangle inequality.
Thus it suffices to prove that

n(ei(Qa)) < COu(Qg) Ve k, Vji20.
To accomplish this, fix a large integer J with the property that

(3.14) p(es(Q)) < 1u(QF) Vo,k;

its existence is ensured by Lemma 17. We require also a variant of E;(QF%):
denote by F,(Q%) the collection of all Q5*"/ C Q% obtained as follows. For

n =1, F1,(QF) = E;(QF). Then iterate:
Fn@)= U Es@™).

QLt~’ €Fa(Qk)

Let f,(Q%) denote the underlying point set, and observe that by de-obfusca-
tion of notation, e,;(Q%) C f.(QX). Roughly speaking, e;;(Q%) is a very
small border of QX, while f;(Q%) = e;(Q%) is a moderately small border,
and f>(QX) is the union of the very small borders of all the constituent
cubes of e;(Q%), hence contains points which are not extremely close to the
border of Q%. We advise drawing a picture, for R! or R? with the usual
Euclidean cubes.
By iterating (3.14) we find that

p(fa(QF)) < 27™u(QF),

SO

ens(Q4)) < 27"p(Q4) = §™p(Q3)
with 677 = 2-1, That takes care of (3.6).

Whenever Q5*! C QX, we shall say that Q5*! is a child of Q%, and Q¥

the parent of Qz‘“. Likewise we may speak of ancestors, descendants and
siblings of cubes; an ancestor is the parent, or parent of the parent, or so
on. A cube QF is said to be of generation k. The number of children which
a cube can have is bounded above by a constant depending only on Ay, A;
and on §; henceforth § and ag will be fixed and taken to depend only on Ay,
A;.

There is nothing to prevent the space X from having atoms, points y
such that u({y}) > 0, which possibility will eventually cause us grief. If y
is an atom, it must be that for every sufficiently large k, the unique cube
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of generation k which contains y will be simply {y}. Even if there are no
atoms, it can happen that a cube has only one child, and this can occur for
an arbitrarily large number of successive generations. Two cubes which are
of different generations, but which are identical as sets of points, will always
be regarded as distinct cubes. Therefore an atom will always be a cube of
infinitely many generations.

However, for any atom z, there exists a finite k such that {z} is not a
cube of generation k£ modulo a null set, except in the trivial case where the
entire complement of {z} is a null set. For suppose the contrary. For any
k, there exists a such that z € QX. If z # z*, choose 0 < ¢ < C3 such that
z # B(zk,e). Then p(B(z%,e)) = 0, whence u(X) = 0, a contradiction.
Therefore B(z,C36%) C QE, so that modulo a null set, z is the only point
in B(z,C36%), for all k. Letting k — —oo, we find that z is the only point
of X, again modulo a null set.

Observe that if (X,p,n) is a space of homogeneous type and @ C X
one of our dyadic cubes, then (Q, p|q, #|Q) is again a space of homogeneous
type. For if Q is of generation k, then for all » < §*, for each z € Q,
p(Q N B(z,r)) ~ u(B(z,)). Indeed, choose j such that r ~ §7. Then z be-
longs to some cube Qf,. '}, intersects @), hence must be a subset of Q. But
#(Q%) ~ p(B(z,r)) by the doubling property, (3.4), and (3.5). If r > 6F,
then u(B(z,r)N Q) ~ p(Q) for the same reason. So the doubling property
also holds for Q.

Here is a consequence of the “small boundaries” condition (3.6):

LEMMA 18. Let K be a standard kernel and A a large constant. Let Q
be any dyadic cube of generation k and let Q = {z € X : p(z,Q) < As*}.
Then for any L™ function f which vanishes almost everywhere outside of

Q\@Q,
ITk fllLr@) < Cllflloor(@) -

Recall that Tk f(z) = [ K(z,y)f(y) du(y); in the lemma we are dealing
with z outside of the support of f, so no principal-value limit is required to
make sense of the integral. The constant C depends only on Ay, A4;, A, and
the constants in the standard estimates for K.

Proof. Let E; = {z € Q : §+i-1 < p(z,Q \ Q) < 6*+i} and for

z€Q, Fj(z)={ye Q\Q: §+-1 < p(y,z) < §**i}. Let us examine, for
TE Ej,

%
J Az du@) =Y [ Mz,v)tdu(y).
Q\Q =1 Fi(2)
Recall that A(z,y) = p(B(z,p(z,y))); it follows from the triangle inequal-
ity and doubling property that for all y € Fi(z), AM(z,y) ~ u(B(z, )
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uniformly in z, y, k, a, . Hence

(o)
[ Mz, 9)duy) <C Y u(B(z,6¥)t [ du(y) < C(1+4]).
Q\Q i=j B(z,6*t%)

This is helpful because for z € E;,
T f@) <Nfllow [ 1Kz 9)du(y)
Q\Q
<Cliflle [ Mazr)7 du(y) < CA+1FDIS Nl
Q\@
Summing over j and invoking (3.6) gives

C
J 1T (@)l du(z) < Cliflle Y, (1 +15]) [ du(z)
Q E;

j=—o0

C
= Cliflle Y (L+151)n(E;)

j=—0o0
(o)
<Clfllo Y- (1+15D27"1(Q) £ Cliflloor(@) -
j=-o00

We need one last general fact about the dyadic cubes.

LEMMA 19. There ezists C < oo such that for every bounded set E C X,
there ezists k such that the number of dyadic cubes of generation k which
intersect E is at most C.

Proof. Let r be the diameter of E and fix a reference point y € E. Let
k be a very large negative integer. Consider the set of all dyadic cubes Q¥
which meet E. For any of them, p(z%,y) < Aop(2X, E) + Aor < AgC16* +
Aor < 240C,6%, using (3.4) and choosing k to be sufficiently large. By
the doubling property and triangle inequality, if C' is large enough but
independent of r, k, all the Q% are contained in B(y,C'6%), and all their
measures are comparable to that of B(y, C'6¥). Since they are disjoint, there
are at most a fixed number of them.

4. Proof of the main theorem. Let X be a space of homogeneous
type and let @ = {QX} be a system of “dyadic cubes” on X, satisfying the
conclusions of Theorem 11. We shall require a slight variant of the T'(b)
theorem. A function b € L* is said to be dyadic para-accretive if for every
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Q% there exists Q5 C QX with £ <k + N and

| [ bau| > en(@f),

Q%
for some fixed ¢ > 0, N < co. Note that u(Q%) ~ u(Q%), by the triangle
inequality, doubling property, (3.4), and (3.5). f belongs to dyadic BMO if

sup inf u(Q)™" [ 1f(w) - cldu(y) < oo
Q

THEOREM 20. Suppose that b', b® are dyadic para-accretive functions,
that T : b'D, — (b*D,) is a weakly bounded singular integral operator, and
that T'(b'), T(b?) € BMO (dyadic). Then T is bounded on L?.

Given the existence and basic properties of the dyadic cubes, the proof
is an exercise (though not a short one) in known technique, and we omit
the details. See Coifman-Jones-Semmes [CJS] for the proof in R!, in the
special case b! = b? and T(b') = T(b%) = 0. A slightly different version of
their argument may be found in [C, Chapter IV], along with a recipe for the
paraproducts needed when T'(b*) # 0.

The strategy for the proof of the main theorem is apparent in the for-
mulation of the next proposition.

PROPOSITION 21. Let X be a space of homogeneous type, let Q be a
system of dyadic cubes on X and suppose that X itself is an element of Q).
Let T be a truncated singular integral operator. Suppose there ezist pseudo-
accretive systems {b}}, {b%} such that T(bY),T*(b%) € L, uniformly in
B. Then there ezist dyadic para-accretive functions b', b* such that T(b'),
T*(b?) € BMO (dyadic) and T : b'D, — (b*°D,)' is weakly bounded, for
any a > 0. Moreover, b!, b2, T(b'), T(b?), and the constant in the weak
boundedness inequality (1.4) satisfy bounds depending only on Ag, Ay, on the
constants in the standard estimates for K, on the constants in the definition
of pseudo-accretivity for {b;}, and on supg ||T(b})|lco + supp || TH(0%)||co-

For each Q = Qf, set by = by where B = B(z},a06%). Then b
is supported inside Q, and | [ bal > eu(Q), for another constant ¢ > 0.

Renormalize by multiplying each bf; by a scalar, so that we have for all
Q€ Q,

(4.1) Ibglleo < Az,
(4.2) [ bpdu = p(Q).

{b‘Q} is called a dyadic pseudo-accretive system, for i = 1,2. Henceforth we
forget {b%}, and work with {b3,}.
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Our proof runs into technical difficulty in the presence of atoms, points
such that p({:c}) > 0. A cheap trick eliminates all difficulty: Define a
new space ()L , Py 1) where X is obtained from X by retaining each point
of X which is not an atom, but replacing each atom ¢ € X by a pair
of points z1, z3. For each atom z € X let r(z) = infyx, p(z,¥); r(z)
must be strictly positive. (Otherwise we could construct inifinitely many
pairwise disjoint balls B(yj,r;) near z, such that z € B(y;,Cr;) where
C = C(Ao) is a fixed constant. Therefore u(B(y;, r;)) would be comparable
to u(B(yj,Cr;)) > u({z}) > 0, whence any ball centered at z would have
infinite measure, a contradiction.) Define a quasi-metric 5 on X as follows:
p=pon (XNX)x(XNX). Ifz € X is an atom and y € X is not,
then set p(zi,y) = p(y,z:) = p(z,y). If z,y € X are distinct atoms, set
p(zi,y;) = p(z,y). Finally, if z € X is an atom, p(z,,z2) = r(z). It is
easy to check that we have introduced no drastic shortcuts between points,
so that the quasi-triangle inequality holds for p. Next define i on X by
fi=pon X\X,and y({z.}) s#({z}) for every atom. Then the doubling
property (1.2) holds for g, with A; replaced by a constant not exceeding
2A;.

To any function f defined on X may be associated a function f on X,
defined by f fon XNX,and f(:c,) = f(.z') for all atoms z, for both
¢+ =1 and ¢ = 2. Similarly, to any standard kernel K on X ijs associated
a standard kernel K on X. Denoting by T and T the associated operators
(assuming K to be bounded), we have

= (Tf).
Since ||f]| LE = | fllL2(x,u), L* boundedness of T implies L? bounded-
ness of T'.

Out of our system of dyadic cubes on X may be built a corresponding
system on X. For each @ € Q which contains at least two points, construct
Q@ by replacing each atom in @ by the associated pair of points in X. For
every atom z € X, {z} is necessarily a dyadic cube. Recall that we distin-
guish two dyadic cubes which are of different generations even when they
are identical as points sets, so that {z} is actually a dyadic cube of infinitely
many generations. Let k be the smallest integer such that it is a cube of
generation k. On X, define {z;,z;} to be a cube of generation k, and for
every { strictly larger than k, define {z,} and {z,} to be cubes of generation
¢; let us call these new cubes.

Under the hypotheses of Proposition 21, the dyadic pseudo-accretive
systems {b } on X give rise to dyadic pseudo-accretive systems on X. Each

cube Q of X which is not new corresponds to a unique cube @ in X, and
we define bg = (b)"-If R = {z;} is a new cube of X, set biy(z;) = biz}(z).
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Clearly the resulting two collections of functions on X are dyadic pseudo-
accretive systems. _

The upshot of all this is that it suffices to prove Proposition 21 on X.
Once this is done we know by Theorem 20 that T is bounded on L?(X),
whence T is bounded on L?(X), which proves our theorem (1).

Change notation: for the remainder of this section, what heretofore was
called (X, p,u) will be called (Y,py,uy), and what was heretofore called
(X, P, i) will be called (X, p, ).

The next result will facilitate cutting and pasting operations. We write
xE to denote the characteristic function of an arbitrary set E.

LEMMA 22. Let T be a truncated singular integral operator, let {bq} be a
dyadic pseudo-accretive system, and suppose that T'(bg) € L*°, uniformly
in Q. For any € > 0 there ezxists C < oo such that for any Q € Q, for any
fEL® withTf € L™,

IT(fxQlr (@) £ Cll flleo + 1T flleo)(Q) -
As usual, C is not permitted to depend on the L* norm of K.

Proof. Normalize the by as in (4.2). Let @ be of generation k, let
Q' = {z: p(z,Q) < C6*} for a large constant C, and split f = fo + foo
where fo = fxq'. Look at

(4.3) (T (fo),b@)! = I{fo, T*(b@))| < CllfolIT*(b@)lleo < ClIflloors(Q) -

It follows easily from the standard estimates that for all z,y € @, if C is
chosen to be large enough, then

(4.4) IT(foo)(%) = T(foo )W) < Cl|flloo ;

to prove this write T' as integration against the associated kernel, and split
the integral into a series and proceed as at the outset of the proof of Lemma
18. Therefore since [ bgdp = u(Q), we have for all z € Q,

IT(foo)(2) = (T(foo)s b/ (Q))] £ C|| fllco -
But

(T(feo), b@/(@M < KT(f),ba/w(@)) + (T (fo),ba/m(Q))|
S CIT(Nlloo + Cliflloo »

using (4.3). Hence ||T(fo)llz=(@) £ Cllfllc + CIIT(f)llco, and the same
bound then holds for T'( fo).

(}) One might object that Proposition 21 has been stated in general, but only proved
for spaces X. However, once T is known to be bounded on L?(X), the existence of a
suitable dyadic pseudo-accretive system on X follows from functional analysis. See [M,
Chapter 3] for this argument, in the context of analytic capacity.
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It now suffices to verify that ||T(fo — fx@)llL1 (@) £ Cllfllon(@). But
fo — fxq is in L, and is supported on the union of at most a fixed, fi-
nite number of cubes of generation k, each at distance not exceeding Cé*
from Q. So we may split fo — fxg into the parts living on each of these
disjoint cubes, and apply Lemma 18 to each to obtain the conclusion de-
sired.

The proof of Proposition 21 involves iteration of the following basic al-

gorithm. Let @ be any dyadic cube, and suppose we are given a function
¥ which satisfies ||¥||cc < A2 and Ifqudul > eop(Q), where g9 > 0 is a
small constant, which depends on Ay, A; and satisfies a condition to be
imposed below. Consider all the children R of Q. Let ¢ € o be another,

even smaller, constant. If for some R,

(4.5) | [ wdu| <enm),
R

and if R has more than one child, we call R a stopping-time cube and put it
aside. If R has only one child, we examine all descendants of R, and denote
by R' the first descendant which has more than one child.

Such an R’ must exist, for if not, R must consist of some single point
z, which is therefore an atom. Then z = y; or y, for some atom y € Y.
Therefore the most recent ancestor R of R which is distinct from R is simply
{¥1,¥2}, and ¥ is constant on R (for it is obtained by lifting a function on
Y by the procedure prescribed above). Thus trivially

wB7| [ o] = w7 [¥]<e,
A R

so that R should have already been designated as a stopping-time cube
previously in the stopping-time construction. In other words, we should
have stopped before ever reaching R, a contradiction.

Returning to the paragraph before last, R’ is called a stopping-time cube,
and is put aside. Note that R' = R as a point set, so that (4.5) also holds
for R'.

For every child R of @ for which (4.5) fails to hold, we examine in turn
each child-S of R, and ask whether (4.5) holds for §, that is, whether
| f[s¥du| < ep(S). The first descendant of such an S to have more than
one child is designated as a stopping-time cube and set aside, and for the
remaining S, all their children are examined in turn. The process is repeated
indefinitely, passing to higher and higher generations.

After infinitely many steps, we obtain a collection {P,} of pairwise dis-
joint stopping-time cubes contained in ). Each has at least two children,
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and
I f ¢'dﬂl<5l‘(P1)-
P‘Y

Since ||%||o < A2 and |fQ Y| > eop(Q) by assumption, if € is chosen suffi-

ciently small relative to ¢ then there exists 7 > 0, depending only on A,
Ay, such that

Y m(Py) £ (1-nu(Q).

We also wish to modify % on the union of the stopping-time cubes. Fix
v, and divide the children Rg of P, into two nonempty collections, each
with the same number of elements, plus or minus one. Do this so that the
sum of x(Rp) over the cubes of the second collection is greater than or equal
to the sum over those in the first. Define a complex number w of modulus
one so that [ P, ¥ du is a nonnegative real number times w; take w = 1 if the
integral is zero. Define ¢ to be w if Rg belongs to the first collection, and
cg = cpw if Rp belongs to the second, where ¢p is a real number between
—1 and —¢y, chosen to satisfy a further constraint below. Define

Pl = Z:c,@b}g‘9 on URp= P,,
B B

where {b% : S € Q} is the dyadic pseudo-accretive system guaranteed by
the hypothesis of Proposition 21. Consequently

J v'du="con(Rs).
P, B

The number of children Rg is between 2 and a fixed upper bound, and
they all have comparable measures. Therefore if € is sufficiently small but
positive, it is possible to choose the ¢, lying between —1 and —¢g, so that

Jvidu= [ vdu.
P, P,
Fix such an €p, and then fix ¢ in the stopping-time condition (4.5).

Recall that our goal is to build a para-accretive function. The stopping-
time cubes P, are where the stronger pseudo-accretivity condition fails (for
the first time). ¢ has the advantage that although | [, %! dy| is no better
than the corresponding expression for 1, we do have a satisfactory lower
bound on the integral over each child of P,. So assuredly, ! satisfies the
para-accretivity condition, for P,.

Carry this procedure out for each stopping-time cube. Define ¢! = 1 on
Q@ \ U, P, so that 9! is defined on all of Q. Let {Rs} be the collection of
all chi‘fdren of all the nonatomic stopping-time cubes. This completes the
description of the basic algorithm. Its input is a pair (Q, ¥), consisting of a
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cube @Q and a function 9 satisfying ||%||cc < A2 and UQ Ydu| > eop(Q). Its

output is a function !, and a collection {Rg} of pairwise disjoint dyadic
subcubes of (). Their properties are:

(4.6) 19 |0 < Az,
(4.7) [¢tdu= [du
S S

for any S € Q which is contained in @ and is neither a subset nor a parent
of any Rg,

(48) | [ 9" du| > en(s)
S

for every S which is neither a proper subset nor the parent of any Rg,
(4.8") | [ ¥ du| > con(Ry)

Rg
while
(4.9) > #(Rg) < (1-n)u(Q)

8

and
(4.10) =9y onQ\|JRs.

We need to repeat the basic algorithm infinitely many times. Begin with
a dyadic cube R®, and a function ¥° which vanishes almost everywhere
outside of R, and satisfies ||#°]|c < A2 and | [po ¥ du| > eop(R®). Apply

the basic algorithm to obtain a function %! and cubes {R},} with properties
(4.6) through (4.10). For each g, the pair (R}, ¢! Xry ) is admissible data for
the basic algorithm, so we may apply the algorithm on each pair to obtain
further subcubes {R%} and a function 4?2, which is still defined on all of
R® (as described, the basic algorithm only yields a %* defined on |J; R},
but we just set 2 = ¢! on the remainder of R%). An infinite number of
repetitions produces functions 9™ and collections {Rg} of cubes, for every
integer n > 1.
Write E® = R® and E™ = |J; R}. Then

p(E™) < (1-n)"u(R°).
Since E™*! C E™, almost every point belongs to only finitely many E™.

Therefore the sequence ¥™(z) is eventually constant for almost every z, so
we may define

(411) @)= lim ().
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Surely ||¢llo < Aa2.

Suppose now that {bs : S € Q} is a dyadic pseudo-accretive system.
Fix a cube Q, and apply this whole procedure with R® = Q and %° = b},.

LEMMA 23. ¢ is dyadic para-accretive, on Q.

Proof. Let S be an arbitrary dyadic cube contained in Q. Consider the
smallest integer n > 0 such that S is not contained in any R?*+!. Then S is
contained in some R}. If § = R} then u(5)™! [cp = y,(S):i fs ¥™, whose
absolute value has a fixed lower bound by construction. If S is a proper
subset of R, then every R.'y‘*'l is either disjoint from S, or is properly
contained in S. Therefore [¢ o = [;%™. If § is not a stopping-time cube of
generation n + 1 then | [¢¥"| > eu(S) by the stopping-time rule (4.5). If §
is a stopping-time cube, then for each of its children R, we have just seen
that there is a fixed lower bound for the absolute value of the average of ¢
over R.

LEMMA 24. T(y) belongs to dyadic BMO on Q.

Proof. Let S be an arbitrary dyadic subcube of Q. Since ¢ € L™ and
T is a singular integral operator, by a standard argument it suffices to show
that

(4.12) IT(exs)llLi(s) < Cu(S).

Again let n be the smallest integer for which S is not contained in any R%*!,
so that it is contained in some RZ. Ignore for the rest of the argument those

stopping-time cubes P3*! which are disjoint from S. We have ¢ = ¢" on

Recall from Lemma 22 that since S is contained in R2 and %™ = c bk,
on R,

(4.13) IT(¥"xs)llL1(s) < Cu(S).

Since the P3*! are pairwise disjoint,

(4.14) T(pxs) = T(¥"xs)+ )_T((¢ ~ ¥™)xpp+)-
[¢)

Because ||¢ — ¥"|lc < 242 and [ P;“(‘P — ¢™) = 0, it follows readily from
the standard estimates that

IT((P = ¥")xpp+ )l Lrgx\pp+ry < Cu(PEHY).
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Combining this with (4.13) and (4.14) yields

IT(exs)llis) S Cu(S) +C D w(PptY)
P;+1Cs

+ Z T ((¢ - Y™ )xpp )||L1(P;+‘) .
P3tics
But
||T('/’"XP;+’ )"LI(P;“) < CP(PEH) )
so after summing over 3, we have learned that
(415)  IT(exs)lLus) SCHE) + Y IT(expre)llpacpps) -
P;tics
Now feed (4.15) into itself, estimating the Sth term on the right by
Cu(PFt)+ ) IIT(expr+a)llpapr+r) -
Pr¥3icpy¥!

Repeating infinitely many times, we find that

o0
(4.16)  |IT(pxs)llLys) SCu(S)+CY_ > w(prtH)
i=0 P:'l'l'l'ics

<Cu(s),
since

Y u(PP) < (1-n)u(S).
prtitics

The passage to the limit implicit in (4.16) is justified by our assumption

that T = Tk where K is bounded.

In the same way that b! has been constructed, we may produce b? such
that T%(b?) € BMO (dyadic). Both functions b* are defined on some cube

@, and in the next lemma we continue to work only on Q.

LEMMA 25. For any a > 0, T is weakly bounded from b'D,, to (bz'ba)' .

Proof. Let zg € @, r > 0, and a > 0. Suppose that ¢;,9ps € Bq g,
Choose k so that §¥t1 < r < 6*. It is no loss of generality to suppose
that  is greater than or equal to the generation of Q. Let R be a cube of
generation k such that zo € R, and let R be the union of all cubes S C Q

of generation k which intersect B(z,7). Then

1T xRl oy < CH(R) < Cu(R)
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by (4.12) and Lemma 18. For z € R, recalling that T is a truncated singular
integral,

IT(18")(2)| = IT (16 xg) (@)
= | [ K(z,y)b'(y) du(y)

p(z,yl)e
YER
<lpx) [ K(z,9)b'(y) dp(y)l
p(zvyl>5
YER
+ [ K@)l lei(y) - ea(2)] - 1 ()] dp(y)
p(zy)>e
yER
<ITG'XR) @) +Cltlleo [ Mz, 9)7'r%p(z, y)* du(y)
p(:c,yl)z
YER

< IT® xp)(@)] + Callb'||oo -

Thus we obtain an estimate somewhat stronger than the weak boundedness
property:

T (10"l L1(B(zo,ry) £ Cr(B(o,7))-
Certainly this implies that

(T(¢1"), p2b?)| < Cp(B(zo,7)).

Proposition 21 is now proved, for we are assuming that X is itself a dyadic
cube, so it suffices to apply the construction with @ = X. It remains only
to obtain the main theorem in the case where X itself is not necessarily
a dyadic cube. It suffices to prove that T is bounded on L?(E), for any
bounded set E C X, with a bound independent of E. Apply Lemma 19 to
cover E by a union of at most C disjoint cubes @%. Then the space |J, Q¥ is
again a space of homogeneous type, and a suitable system of dyadic cubes on
it may be obtained by defining the whole space to be a cube, its children to
be the Q%, and their descendants of all generations to be the same as in X.
The boundedness of T on |J, Q% follows immediately from Proposition 21,
and the boundedness of T on |J, Q¥ follows immediately from Proposition
21, and the bound is clearly independent of E.

5. An application. Our first application is an alternative proof of a
theorem of David [D1] concerning the Cauchy integral on certain curves in
the complex plane. However, it has much in common with the original proof,
and anyway David’s theorem may be deduced directly from the T'(b) theorem
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itself. Our purpose is merely to illustrate the relationship of Theorem 10 to
an existing circle of ideas.

Let I' C C be a (connected) rectifiable curve, and let A; denote one-
dimensional Hausdorff measure.

DEFINITION 26. I is Ahlfors-reqular if for every 2 € C and r > 0,
A(I'n B(z,7)) <Cr.
For r less than half the diameter of I’ there is the reverse inequality
M NB(z,r)2r

for all z € I Equipped with A; and the Euclidean metric, an Ahlfors-
regular curve becomes a space of homogeneous type. Then K(z,w) =
(z — w)™! is a standard kernel, and the Cauchy integral Cr is defined to
be the singular integral operator associated to K via the usual procedure
(1.3).

The following result is due to David [D1].

THEOREM 27. The Cauchy integral Cr is bounded on L*(T, A;) for any
Abhlfors-regular curve I'.

In order to bring Theorem 10 to bear, we shall require three facts, the
first two of which are already principal ingredients in [D1]. By a Lipschitz
curve we shall mean any Lipschitz graph, or any curve obtained by rotating
a Lipschitz graph any amount. The first fact is that the Cauchy integral is
bounded on L? on any Lipschitz curve, with a bound depending only on the
Lipschitz constant [CMM]. Second, for any Ahlfors-regular I', for any z € I’
and any r > 0 not exceeding the diameter of I', there exists a Lipschitz
graph v such that

M(B(z,r)NI'Nny)>Cr,

and the Lipschitz constant of 4 is bounded independent of z, r [D1]. Third,
if 4 is an Ahlfors-regular curve on which C, is L2-bounded, then for any
closed subset E C v, there exists an L* function h supported on F such
that C,(h) € L*°(v), or equivalently, the Cauchy potential [h(w)(z —
w)~! dA;(w) is uniformly bounded on C\ E, and such that A;(E)™!| [ hdA,|
is bounded away from zero. Of course the L* norm of A and its Cauchy
integral are bounded above by a constant depending only on y. See [M,
Chapter 3].

Let an Ahlfors-regular curve I be given. To construct a pseudo-accretive
system {bp}, for each B = B(z,r) with z € I' and r not exceeding the
diameter of I', choose a Lipschitz curve vy as above, and then take bg to be
an L* function supported on I'NyN B(z,r) and satisfying | [ bgdA;| > er,
whose Cauchy integral is in L®, uniformly in z, r. It follows that Cp(bg) €
L*°(I') uniformly in B, and the same for all the operators obtained by
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truncating the kernel for Cr. Since the Cauchy integral is antisymmetric,
the same pseudo-accretive system works for its transpose, and the main
theorem then implies L? boundedness.

The same argument yields a more general result of David. Consider a d-
dimensional subset E of RV, regular in the sense of David, which “contains
big pieces of Lipschitz graphs”. See [D2] and forthcoming work of David
and Semmes for definitions. Consider further an antisymmetric kernel K
defined on RV \ {0}, which satisfies |[DPK(z)| < Cp|z|~¢~I8l. Then if A4
denotes d-dimensional Hausdorff measure, the operator

Tf(z)= [ K(z - y)f(y)dAa(y)
E

is bounded on L2(FE, A4). This may be proved using Theorem 10, instead
of the “good-A” method of [D1].

6. Analytic capacity and boundedness of the Cauchy integral.
The analytic capacity of a compact set E C C is defined to be
v(E)=  sup  |f'(c0)]
JeH®(C\E)
I/l <1
f(c0)=0
where f’(00) = lim;—, z2f(2). The analytic capacity of an arbitrary Borel
set is defined as the supremum of the analytic capacities of all its com-
pact subsets. The main question about analytic capacity is which F have
positive analytic capacity. It is easy to see that y(F) is zero if E has Haus-
dorff dimension less than one, and is positive if the dimension is larger than
one, so one-sets (Borel sets with 0 < A;(E) < oo) are of particular inter-
est.
A bounded one-set I' C C is said to be Ahlfors—David regular, or simply
regular, if there exists C < oo such that forall0 < r <1,forall z € I,

(6.1) Cr < A/(I'n B(z,7))< Cr.

Again these are spaces of homogeneous type, and the Cauchy integral Cr
is a singular integral operator. Of course the main question concerning the
Cauchy integral is whether it is bounded on L?. The upper bound (6.1) is
a necessary condition, while the lower bound ensures that I" is a space of
homogeneous type.

Our T'(b) theorem has the following implication concerning the relation
between these two questions.

THEOREM 28. Let I' be a bounded, Ahlfors-David reqular one-set, and
suppose that

(6.2) 7(I'N B(z,7)) > Cr
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forallze I and r € (0,1). Then Cr is bounded on L2.

Thus positive analytic capacity, uniformly at all places and all scales,
implies boundedness of the Cauchy integral; note that for any set E, y(EN
B(z,7)) < 9(B(z,r)) = Cr with C finite, so that the right-hand side of
(6.2) is as large as possible, up to a constant factor. Conversely, bound-
edness of Cr implies that y(£) > CA(FE) for all Borel E C I', and the
reverse implication was already known to be true. See the book of Mu-
rai [M] for this and other information regarding analytic capacity and the
Cauchy integral.

For the proof fix z € I" and r € (0,1). By hypothesis there exists f
holomorphic outside of the closure of B(z,r) N I, such that ||f|lc < 1,
f(00) = 0 and |f'(c0)] > Cr. The first two facts imply that f can be
expressed as a Cauchy potential:

f)= [ 2 44 w)

r z

where h is supported on I' N B(z,), and ||h||oc < C, an absolute constant.
Furthermore,

fl() = [ h(w)day(w)
by definition and the dominated convergence theorem. From the upper
bound on ||k||co, the regularity of I" and the fact that the Cauchy potential
of h is bounded off I' N B(z,r), it follows easily that any truncation of Cr
maps h to L, uniformly in z, r; details may be found in [M].

Thus setting bp(,,r) = h for each 2, r yields a pseudo-accretive sys-
tem, with Cf(bg) € L°°(I') for each B and each truncation C§ of the
Cauchy integral, uniformly in B and ¢. The main theorem then implies
that the C§& are bounded on L%(T, A,), uniformly in £ > 0. Because of its
definition (1.3), the Cauchy integral therefore extends to a bounded opera-
tor.

The next result is not an application of Theorem 10 per se, but is in the
same spirit.

THEOREM 29. Let I' be a bounded Ahlfors-David reqular one-set, and
suppose that E C I' is compact and satisfies y(E) > 0. Then there ezists an
Abhlfors-David regular set I'' such that Cf. is bounded on L2(I") and such
that Ay(ENI') > 0.

Since 7(A) > 0 for any subset A C I'' with A;(A) > 0, this says that in
a sense, positive analytic capacity, for regular sets, is always due to bound-
edness of the Cauchy integral.

For the proof, let Q be a system of dyadic cubes on I', as guaranteed
by Theorem 11. Let f € H*®(C\ E) satisfy f(co) = 0 and f'(c0) # 0, and



A T(b) THEOREM 627

write it as the Cauchy potential of an L* function h supported on F, as
above. Then [.hdA; #0.

One of the dyadic cubes @ will be all of I'. Run a stopping-time pro-
cedure on it as in the proof of the main theorem, stopping at a cube P
whenever

(6.3) | [ hdar| < ea(p).
P

I'" will be constructed by excising from I' the union of all these stopping-
time cubes P, and replacing each Pz with a certain set Sg. If € is chosen
to be sufficiently small in (6.3) then we will have A;(I"\ U, P3) > 0, and in
fact fr\u,P, h~ [h#0,whence Ay (ENTI')>0.

There exists ¢ > 0 such that for each Pg, there exists 25 such that
B(zs,crg) C Pg, where rg denotes the diameter of Pg. Let S be the union
of two circles centered at zg, of radii ¢/2 and ¢/4, respectively. Define a
function gs on S3 to be constant on each of the two circles, and adjust the
constants so that their absolute values are bounded above and away from
zero, and so that

[ opdti= [ hda,

S Ps
and do this so that the bounds are uniform in §.
Define
= (F\UPg) ulJSs
B B
and set

b—{h on I'nI',
93 OnSp,

For a system of dyadic cubes on I" take all § € Q which are not con-
tained in any stopping-time cube, together with all Sg, together with each
of two circles comprising each S, together with subsets of all these cir-
cles, obtained by bisecting each circle into two semicircles, then repeat-
edly bisecting the semicircles and resulting arcs. Then b is dyadic para-
accretive with respect to this system of cubes. The proof of Lemma 24
shows that Cf.(b) belongs to dyadic BMO(I"), uniformly in €. There-
fore the Cauchy integral is bounded on L%(I"), by the original T(b) the-
orem.

Finally, I'" is an Ahlfors-David regular set. This follows from the facts
that A;(Sg) ~ A1(Pg) for all 3, and that the distance from Sp to its com-
plement in I’ is comparable to its diameter, and from the proof in Section
3 that any dyadic cube is itself a space of homogeneous type.
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