COLLOQUIUM MATHEMATICUM

VOL. XLIV 1981 FASC. 1

BALAYAGE BY FOURIER TRANSFORMS
| WITH SPARSE FREQUENCIES
IN COMPACT ABELIAN GROUPS

BY

GEORGE 8. SHAPIRO (BROOKLYN, NEW YORK)

1. Introduction and general results. Throughout, I" will denote an
infinite compact abelian group with (discrete) dual group @, both written
additively. If F < I" is compact and 4 < @, then A (FE) denotes the set
of functions ¢ on F expressible in the form ’

1) o(t) = D ay(a, 8y forall te B

Aea

with }[a;] < oo. The set A (E) is a Banach space under the norm

Il my = ing{ D lal: (1) holds}.

We write A (E) for Agz(F) and recall a notion of Kahane [4], p. 150:

Definition 1. F is an A4, if A(E) = A ,(E).

In this situation (though for the ecase where I' is not compact) Beurl-
ing [1] (see also [7]) says that balayage i8 possible for (A, E).

Definition 2. ¥ is a BAS set (BAS stands for balayage with arbitra-
rily sparse frequencies) if, given any sequence of functions {F,}{° having
values in the collection of finite subsets of @, there is a set 4 = {4,}{°
such that ¥ is an A4, and such that

(2) ln ¢Fn()'1’ ;'27 ey ]'n—l) for all .

(Here, F', is just a finite subset of @.)

Kahane [4], p. 151, and [5], p. 160, showed the existence of fairly
large BAS sets (of Cantor type) in the circle group. In [7] similar examples
were constructed in the real line by using a different technique. The
author [8] used a related method to construct BAS sets in a class of compact
groups (see below). In this paper, we show the existence of reasonably
large BAS sets in all metrizable compact abelian groups.
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If 8 is a subset of a group and m a positive integer, then mS denotes
the set of sums {r,+x,+ ... +2,:2,€8, ¢+ =1,2,...,m}. Our main
result is

THEOREM 1. If I' is a metrizable compact abelian group, then I contains
a BAS set E such that 6E = I

Before proving Theorem 1, we need some auxiliary results. For the
rest of the paper, I' is assumed to be metrizable so that G is countable.

Definition 3. {#,}° = @ is a unity-approzimating (UA) sequence
for E c I' if the =z, are distinct and, for all » and all t € B,

. T l/g—l
1 —<®,, )| < 2sin o = 3 .

The arguments in [7], p. 194 and 195, can be generalized and (since G
is discrete and countable) simplified to prove

THEOREM 2. If there i8 a UA sequence for E, then E is a BAS sel.

Proof. Let {z,}° be a UA sequence for E. Enumerate G = {g,}7°.
Given a sequence of functions {F,};° as in Definition 2, we define 4 = {4,}°
iteratively as follows. Assuming 4,,4,,...,4,-; to have been chosen,
there is some k, such that

T, ¢ FplAyy Agyeony Apey) —Gn

since that set is finite. Let 1, = #, +g¢,. By construction, A satisfies (2).
We must show that ¥ is an A4 . '
The argument given in [6], p. 107 and 108, shows that the condition

. T
sup {|l1 —<@, t|: t € B} < 2sin

for m an odd integer implies that
. K
11 —<@, >l 4z)<2sin om

and, thus,

13 l/g—l

"1 —“<m“, .>”A(E) < 2Sin 10 = P fOl‘ aoll ”.

Since {gn,t> — (Ap, > = {gn, ) (1 —<=;,,, 1)), We have also

V5 —1

2

IKgns > — {2n, '>"A(E) <

Now, given ¢ € A(E) and &> 0, there are {a,} with
Dlan <1 +o)lplym and  ¢(t) = D ay<g,,t> for te B.
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Define y by y(t) =D a,{4,,t)> for ¢t H. Clearly,
vyed, (B) and iyl m < 1+o)lplyz,-
We have

v/5 —1
o —Whage < D) 18al 195 > —<Any Mlamy < (L+¢)

lellgz) -

A standard iteration now shows that ¢ € A ,(E), so that F is an A4
and the theorem follows.

We say that K is a quotient of I' if there is a closed subgroup I'y = I”
such that K is topologically isomorphic to I'/T'y. If H is a subgroup of @,
we write H' for the annihilator of H,

L ={tel:<(w,t) =1 for all xeH},

and we recall that I'/H' ~ ﬁ, the dual group of H. Let Z, denote the
group of p-adic integers, and T the circle group. In order to reduce the:
proof of Theorem 1 to constructions in certain specific groups, we need
a result which is similar, but not identical, in both statement and proof
to a result of Varopoulos [9], Lemma 6.2.

THEOREM 3. Any compact, metrizable abelian group I' satisfies at
least one of the following:

(a) I' 18 topologically isomorphio to a group of the form X I, , where
each I, is compact and non-trivial.

(b) T i8¢ a quotient of I

(¢) Z, is a quotient of I' for some prime p.

Proof. Consider the countable abelian group G. If G contains an
element z of infinite order, then H = {nx:n € Z} is isomorphic to Z so
that I'/H* ~H ~Z =T and (b) holds.

Thus, we may assume that G is a countable torsion group. By [2], 21.3,
we have G = D®B, where D is a divisible subgroup of G and B
is reduced, i.e., B contains no non-trivial divisjble subgroups. If D is
non-trivial, then, being a divisible torsion group, D (and hence @) contains
a subgroup H isomorphic to Z(p*) for some prime p ([2], 23.1). (See Sec-
tion 2 for a discussion of this and related groups.) Then I'/H+ ~Z(p*™)"
~Z, and (c) holds.

The situation remains where @ is itself reduced. In this case, write

G = @Gy,
p
where G, is the p-primary component of G and the sum is over all primes

([2], 8.4). If infinitely many of the G, are non-trivial, then dualizing
shows that (a) holds. Otherwise, there is a p, such that @, is a countably
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infinite reduced p,-group and is, therefore, itself the sum of ¥, non-trivial
Po-groups ([2], 77.5). This clearly implies that @ is the sum of ¥, non-trivial
subgroups, so that dualizing again shows that (a) holds, proving the
theorem. -

We state two simple results which we shall need.

LeMMA 1. Let K be a closed subgroup of I' amd let the projection n:
I’ - I'y ~ I'| K be canonioal. Regard K+ < G (= f) as the dual group of I',.
Let E c I'y and suppose that {x,}° < K+ is a UA sequence for E. Then
{r,}, regarded as a sequence in @, is also a UA sequence for n~(E).

Proof. The result follows immediately from the observation that
if reK* and yeI', then

oy y)> = <@y m(y)),

where, on the left, we consider the pairing between G and I" and, on the
right, that between K and I,.

LeEMMA 2. If I'y is a quotient of I', & 18 the canonical projection and
E c Iy satisfies mE = I'y, then ma~'(B) = I.

Proof. Given y € I', there are, by hypothesis, ¢,, %5, ..., t, € E with
w(y) =t +t3+ ... +1,. Since = is surjective, there are y,, ysy ..oy ¥m €I
with =(y;) =1¢; for + =1,2,..., m. Thus, if

o =y—(Y1+vat ... +7m))

then 7(o) = 0 and #n(y, + o) = t,. The equation y = (y,+0)+vys+ ... +Vm»
therefore, exhibits y as an element of ma~'(H).

In [8]it was shown that if I'is of the type described in (a) of Theorem 3,
then there is a BAS set E (containing 0) in I" with 3E = I'. In view of
Theorem 3 and Lemmas 1 and 2, it suffices for the proof of Theorem 1
to consider only the group T and the various groups Z,. Accordingly,
we shall construct, for any p, a compact set E < Z, containing a UA se-
quence and such that 6 = Z,. The outline of such a construction for T
will then be indicated. (In [8] & similar construction for R is less clearly
Ppresented.)

~: 2. Construction in Z, and in T. We first introduce some notation
and recall certain facts. I(m) denotes the group of integers modulo m
regarded as the set {0, 1, 2, ..., m —1}. Let p be a fixed prime and g = p",
where r is a positive integer to be specified later. For any r, the group Z,
of p-adic integers is isomorphic to the group Z, described below but, for
technical reasons, it will be more convenient to work with Z,.

An element ¢ € Z, is regarded as a sequence

{3) t = {ayy @y, aq,...), Where a; € I(q) for all ¢.
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Z, is given the product topology and we think of ¢ in (3) as the con-
vergent series ), a;q*, so that the addition of elements is not compo-
0

nentwise addition in the product I(m)%, rather it “carries to the right”.
(For a detailed treatment of Z, in somewhat different notation see [3],
Sections 10.1-10.10, 25.1, 25.2.)

For any k¥ =1,2,3,... with ¢ as in (3) we define

0r(t) = ag+ag+ ... +a_,g"

go that o, is a homomorphism of Z, onto I(g*).

Z(q®) (~Z(p™)) is the group of rational numbers of the form m/g*
with addition performed modulo one. Z(¢*) may be regarded as the dual
group of Z, under the pairing

m m
—,t) =exp (21:6— g, (t)).
< ¢’ > ¢ "
We now assume that r is picked so that ¢ = p" > 81. Then it is always

possible to find an integer 8 such that
g’

‘ 2>

(4) 10=°
and

q+6

(8 T

Having chosen such an s, we let E be the set of

t = <ao’ al, ag, ..-> eZq
such that
a;eB, ={0,1,...,8—1}u{g—8,q—8+1,...,¢—1}

for all +. One verifies readily that (as subsets of the group I(q))
mB, = {0,1,...,m(s —1)}U{g—ms, g—ms+1, ..., g1},

so that the inequality 6(s —1) > ¢ —6s (which follows from (5)) implies
that 6B, = I(g). Using this fact and given ¢ € Z,, one can construct itera-
tively t,, ¢, ..., t; € E, a digit at a time (taking account of the “carrying”)
such that ¢ =%, +t;+ ... +%;. Thus 6E =Z,.

Suppose that & = <a,, @y, as,...)€BE. If a,_,<s—1, then g,(l)
< 8¢*~! —1, whereas if a,_, > ¢ —s, then o, (f) > ¢* —s¢*~'. In either case,
0, (?)/¢* is within 8/q of an integer (either 0 or 1) so that

() =)

= |1—exp (21:12

27
10

//\

<poenfts

._exp(
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because (by (4)) 8/g <1/10. Thus, we have shown that {1/¢*}° is a UA
sequence for E so that the proof of Theorem 1 in case (¢) of Theorem 3 is
complete.

We turn now to the circle group T which we realize, for convenience,
as the set of real numbers ¢ such that 0 < ¢ < 1 with addition performed
modulo one. In this realization, the pairing of Z and T is given by {(n, t)
= exp(2nint). Pick integers ¢ and s satisfying (4) and (5) (¢ need not be
a prime power). Then we let E be the set of { € T expressible to base ¢

in the form
t=lag™,
1

where a, € {0,1,...,8—-1}U{g—8,9—8+1,...,¢—1} for all k.

It is readily established (as above, by (4)) that {¢*}*° < Z is a UA
sequence for E. The equality 6 = T follows, again, from (5). (The details
differ since now addition carries to the left. Given

t = Za,‘q‘_—"‘ eT,
1
one shows by induetion on » that, for each =,
n
2 axg ¥ € 6E,
1

and then uses the fact that 6F is closed.) This completes the proof of
Theorem 1.

In the light of Theorem 1 and the result of [8], the following question
arises:

Are there any BAS sets F in any I' (and, especially, in I" = T') with
E+E =T% (P1198)

REFERENCES

[1] A. Beurling, On balayage of measures in Fourier transforms, Notes from a seminar
at the Institute for Advanced Study, Princeton, New Jersey, 1959-1969 (unpub-
lished).

[2] L. Fuchs, Infinite abelian groups, Vol. I and II, Pure and Applied Mathematics
36 (1970 and 1973).

[3] E. Hewitt and K. A. Ross, Abstract harmonic analysis, I, Die Grundlehren der
mathematischen Wissenschaften 115 (1963).

[4] J.-P. Kahane, Séries de Fourier absolument convergentes, Ergebnisse der Mathe-
matik und ihrer Grenzgebiete 50 (1970).

[6] — and R. Salem, Ensembles parfaits et séries trigonométriques, Actualités des
Sciences Industrielles 1301 -(1963).



BALAYAGE BY FOURIER TRANSFORMS 157

{6] Y. Meyer, Algebraic numbers and harmonic analysis, North-Holland Mathematical
Library, Vol. 1I, Amsterdam 1972.

{7] G. Shapiro, Balayage in Fourier transforms: general results, perturbation and balay-
age with sparse frequencies, Transactions of the American Mathematical Society
2256 (1977), p. 183-198.

{8] — Balayage by Fourier transforms with 8sparse frequencies in compaot abelian
torsion groups, Proceedings of the American Mathematical Society 71 (1978),
p. 263-256.

{9] N. Th. Varopoulos, Sets of multiplicity ¢n locally compact abelian groups, Annales
de I'Institut Fourier, Grenoble, 16 (1966), p. 123-158.

DEPARTMENT OF MATHEMATICS
BROOELYN COLLEGE
BROOKLYN, NEW YORK

Regu par la Rédaction le 20.7. 1978



