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ON STEMS
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The paper consists of two parts. In the first one we introduce a notion
of a stem, i.e. of an ordered set with a special kind of order, and show
what are its topological and metric equivalents. And in the second we
turn to the question of a reconstruction, by means of functions of di-
mension, of that order from a proper topology acting on a stem.

1. An ordered set (X, <) is called a stem if the relation <3 partially
orders X, and if

(i) there exists in X an element a which precedes any other element
of X (i.e. a ] « for all xeX),

(ii) for every zeX, there exist only finitely many elements of X
which precede z,

(iii) for every zeX, all elements of X which precede x are linearly
ordered. .

The point a is called a germ of the stem X. Obviously, any stem
contains one germ only.

There are several natural examples of stems. Such is, for instance,
the set of natural numbers with the order < and 0 as a germ. And if we
consider a Cantor fan, i.e. the union of all rectilinear segments L(z)
connecting points (r, 0) of a Cantor ternary set with a point, say, (3, 1),
then any subset X of ( JL(r) containing the point (3, 1) and meeting
each segment L(t) in a finite set may be regarded as a stem if we agree
to the definition that point x¢X precedes point ye X,z < y, if and only
if both belong to the same segment L(t) and ordinate of x is not greater
than that of y. In particular, a vast class of biconnected sets consists of
stems (cf. [2]).

Also, if we consider the greatest lower bound of any two elements
of a stem X, x and y say, to be the greatest 2« X with the property z 3 =
and 2 3 y, then stems are simple examples of semilattices in the sense
of G. Birkhoff [1]. In particular, each stem is a directed set, because
the inverse relation s directs it (for relevant definitions see also [4]).
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Now we shall introduce into every stem a topology — called in the
sequel a proper one — which depends entirely on the order structure
of X and reflects it completely. Namely, for a given be¢X we define the
least open neighbourhood U, of b to be the set of all those z, including a
and b, which lie between a and b. By virtue of (i) and (ii) any such neigh-
bourhood is a finite set, and by (iii) the intersection of any two of these
neighbourhoods is again a neighbourhood of some point of X. Open sets
in X are the unions of these neighbourhoods. In particular, the germ a
forms an open set, but the only closed set to which it belongs is the whole
X. And no other point of X has that property. Obviously, the proper
topology turns X into a T-space.

If X is a topological space, then — as one can easily see —the topology
acting on X is proper if the following three conditions hold true:

a) there exists a point a which belongs to every non-void and open

subset of X,
b) there exists, for every point z of X, the least neighbourhood of
« which is a finite set,
and, denoting the least neighbourhood of # by U,,

c) if zeX, beU,, and ceU,, then either be U, or ce U,.

In fact, these three conditions correspond to conditions (i)-(iii) imposed
on order structure of stems if we introduce an order into X by the defi-
nition

<y if and only if xeU,.

Since both definitions of a stem X, that with the help of an order
and that given by a proper topology, are equivalent, we shall not distin-
guish between the two in the sequel.

Now let b and ¢ be two elements of a stem X. By virtue of the
definition of an order in X, there exists an element e« X which precedes
both b and ¢, and is the greatest with this property. Furthermore, all
elements of X which lie between ¢ and b may be arranged in a finite
sequence € =Ty 3 %; < ... < rx = b, and similarly, all elements of X
which lie between ¢ and ¢ may be arranged in a finite sequence ¢ = y, <
2Y; ... Y, = c¢. Let us denote the set

{b = Dy Tie_19 o9 L1y Ty = € = Yoy Y19 +++9 Y1 =c}

by L(b, ¢). The pair (k, 1) of natural numbers will be denoted by = (b, ¢)
and called relative number of knots, and the sum %+ will be denoted
by n*(b, ¢) and called absolute number of knots between b and ec.

Hence the absolute number of knots tells us how many “knots”
we have on the way from b to ¢, and the relative number of knots is more
precise to say how many down and how many up.
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Notice that if X is a stem with a germ a provided with a proper
topology, then

L(a,2) = U, for every xeX.

Moreover, if d is the greatest element of X preceding two given
elements of X, b and ¢, then

(1)  L,e) =UUp—Up~ Ue) v {d8}] v [(Ug— Up ~ Ue) v {d}].
Consequently,
(2) n(b, ¢) = [n*(a, b)—n*(a, d)+1, n*(a, c)—n*(a, d)+1].

In fact, the first sommand of the right-hand side of (1) consists of
all those elements of L(b,¢) that precede b, and their number is equal
to the number of elements in U, minus the number of elements in U, ~ U,
plus 1, i.e. to n*(a, b)—n*(a, d)+1. Similarly for the second sommand.

Notice also that elements b and ¢ are comparable if and only if
n(b,c) = (k,1) and either ¥ =0 or | = 0; if ¥ = 0, then b < ¢, and if
1 =20, then ¢ 3 b. Consequently,

(3) =n(b,c) =(0,0) if and only if n*(b,c) = 0 if and only if b=ec.

If we have three collinear points x < z < y, then obviously L(x, v)
= L(z,2) v L(2,y), and consequently,

(4) n*(z, y) = n*(x,2)+n*(2,y).

It should be equally obvious that if, for given x and y, an element e
is the greatest one preceding both x and y, then

(5) n*(x,y) = n*(z, e)+n*(e, y).

Finally, let us remark that if X is a stem, then the function =n(z, y)
ranging over X X X completely determines the order structure in X.
For instance, germ a is the only point of X having the property =n(a, y)
= (0, 1) for any yeX. And if it happens that we do know what a point
a is the germ of a stem X, then the function n*(x,y) already suffices
to re-read the order structure in X, In fact, with the help of function
n*(a, ) we can find the set L(a,b) for every beX, because

L(a, b) = {z: n*(a, x)+n*(z, b) = n*(a, b), xeX}.

And now, given two elements b and ¢, we simply check the number
of elements in the sets L(a,b)— L(a,c) and L(a,c)— L(b,c). If it is
equal, respectively, to k¥ and [, then we have n (b, ¢) = (k, l). In particular,
b 3 ¢ if and only if L(a,b) c L(a, c).
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We say that a metric space (X, g) is ¢nteger-convex if
(i) e is a metric,
(ii) for all xeX and yeX, o(z, ¥y) is a non-negative integer,

(iii) for every pair x and y of elements of X and every integer
0 <k < o(z,y) there exists exactly one point ze¢X such that

o(x,2) =k and o(2,y) = e(®,y)—k.

The set of natural numbers with the metric go(m,n) = |m—n| is
a simple example of an integer-convex space.

More generally,

THEOREM 1. Every stem X is an inieger-convexr space with the metric

o(b,e) =n*(b,¢c), beX,ceX.

Proof (1). We have to check first that n* is a metric. By virtue
of (3) there is n*(b,c) = 0 if and only if b = ¢. And since symmetry
condition

n*(b,c) = n*(c,b) for all beX and ceX

is equally obvious, it remains to see the triangle condition only.

Let b, ¢, and d be three arbitrary elements of X. Denote by e,, e,,
and e; the greatest elements of X preceding, respectively, ¢; — both b
and d, ¢, — both ¢ and d, and e¢; — both b and ¢. Since both ¢, and e,
precede d, then there is either ¢; 3 ¢, or e, < ¢,. For the reason of sym-
metry suppose that ¢, < ¢,. Then, by virtue of ¢, < b and ¢, 3 ¢, the
element e, precedes both b and ¢, and therefore, in view of the defini-
tion of ez, there is also ¢; 3 e;.

In view of (5) we have then

(6) n*(b, ¢) = n*(b, e5)+n*(es, ),

(7) n*(b, d) = n*(b, 1)+ n*(ey, d),

(8) n*(d, ¢) = n*(d, e;)+n*(e,, ¢).
And, since e, 3 ¢; 3 b, by (4)

(9) n*(by, €,) = n*(b, e5).

Consider now two particular cases.
I. e, 3 ¢;. In that case we have ¢ 3 ¢, 3 ¢;, whence we infer by (4)
that

(10) n* (e, ¢) = n*(es, ¢).

(1) The author is indebted to Dr. L. W. Nitka for some improvements of the
original proof.
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Replacing now two right-hand sommands of (6) by =»*(b, e¢;) and
n*(e,y, c), respectively, we obtain by virtue of (9) and (10) the inequality

n*(b, ¢) < n*(b, e;)+n*(ey, c),

the right-hand side of which is obviously not greater than the sum of (7)
and (8).

II. e5 3 €,. In that case using the fact that ¢, 3 e, 3 e, 3d, we
infer by (4) that
(11) n*(6,, d) = n*(eg, €,).

And since e; 3 ¢, 3 ¢, by applying again (4), we have
(12) n*(eg, €5)+n*(eq, ¢) = n*(eg, c).

Replacing now two right-hand sommands of (6) by n*(b,e,) and

n* (s, €;) +n*(ey, ¢), respectively, we obtain by (9) and (12) the in-
equality

n*(b, ¢) < n*(b, e;)+n*(es, €2)+n* (e, ¢),
whence by an application of (11) we get
n*(b, ¢) < n*(b, e,)+n*(ey, d)+n*(ey, ¢),

and it suffices only to add to the right-hand side of the last inequality
the sommand »*(d, ¢,) in order to get the sum of (7) and (8).

Thus we have proved that the function n* is a metric on X. It ob-
viously satisfies (ii) by its very definition, and since for every two ele-
ments beX and ceX the set L(b,c) is uniquely determined, it satisfies
(iii) too. Hence the proof of Theorem 1 is completed.

REMARK. A part of Theorem 1 holds true in a more general case.
Namely, if X is a semi-lattice with greatest lower bound = Ay and with
a norm || satisfying the condition:

@ 3 y implies |lz|| 3 [lyll,
then defining

o(@, y) = llall+ Iyl — 2l Ayl

we easily check that the quite analogical proof to that of Theorem 1
works to the end that ¢ is a metric.

However, since this generalization presents no difficulty, in view
of the clearness of the paper we have consciously restricted ourselves
to a particular case of an integer-convex -space. .

Any integer-convex space may be turned into stem, and in fact
usually into many stems. For if @ (x, y) denotes a segment in an integer-

Colloquium XV, 17
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convex space between its points # and y, then we have the following
theorem:

THEOREM 2. Let X be an inieger-convexr space and a any point of X.
Then putting
U,=Q(a,x) for every xeX,

we get a stem with a germ a.

Proof. We shall check conditions a), b), and c).

a) Obviously, ae U, for all xeX.

b) Since every segment ¢ (a, x) is, by the definition of an integer-
convex space, a finite set, U, is finite for all xeX.

c) Finally, if zeX, and beU, and ceU, are two distinct points of
U, then by the definition of an integer-convex space and the defini-
tion of U, there is either o(a, b) < o(a,c¢) or p(a,c) < o(a,d). In the
first case we have be U, and in the second ceU,.

2. For a reconstruction of the order structure from a proper topo-
logy acting on a stem we shall use functions of y-dimension. Let us recall
them (see [3]).

Denoting by I' the set of all sequences consisting of 0’s and 1’s only,
we assign to any yel' a function of y-dimension as follows:

(i) if X = @, then y-dim X = —1,

(i) if X # @, then y-dim X = sup p-dimypX,
YeX/yl

where X [y, is X itself if y, = 0 or the family of all closed subsets of X
if y, =1,

(iii) y-dimyX < » means that for every neighbourhood U of Y there
exists a neighbourhood V of Y such that V <« U and

(y2y Y3y ---)-dim Fr(V) <n—1.

A particular sequence consisting of 0’s only will be denoted by a,.
Obviously, the definition of a,-dim is precisely that of Menger’s inductive
dimension ind.

To find y-dimension for a finite set we shall apply procedure of [3]
consisting in finding out those y-sequences of a given set, which have
the maximal length. By a y-sequence of X we mean any triple sequence
{H;, Ujs Fj}jzr,s,..,c such that

(a) H, is an element of X/y,, U, is the least open subset of X con-
taining H,, and F, is the boundary of U,;

(b) if j > 1, then H; , is an element of F;/y;,,, U;,, is the least open
subset of F; containing H; ,, and F;,, is the boundary of U;,, relative
to F;(Fy/y;,. is equal to F; for y;,, = 0 or to the family of its all closed
subsets for y;,, = 1);

(c) Hi#9Q # U; for all j =1,2,...,k and F, = O.
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LemMMA 1. If X is a stem with a germ a, and ¢ 8 any point of X, then

n*(a, ¢) = ay-dim U,. .

Proof. Let U, = {a = x,, #,, ..., ¢x = ¢}. The only non-void sub-
gets of U, in the relative topology are the sets {x,,x;,...,%;}, where
1=0,1,...,k.

We shall construct an a,-sequence of a maximal length. The best
choice for H, is z,, for we have then

H1={m0}7 U1={w0}7 F1={w1’$27°"’mk}7

and having made any other choice for H, we are left with a proper subset
of F,.
It is easy to proceed further on. Namely,

Hi,={&}, Uipr={w}, Fipy={Tip1,@irgy--eyPh}
for ¢t =1,2,...,k—1, and
Hypy = {2}y Ukpn = {on}, Frpa=9.
Hence by Corollary 1 of [3] there is
ay-dim U, = k,

and our lemma follows.

THEOREM 3. Let X be a stem with a proper topology. If beX and
ceX, then

ap-dim U, = n*(a, b), ap-dim U, = n*(a,¢),
and
n(b, ¢) = [n*(a, b)—k+1, n*(a, c)—k+1],

where a 8 a germ of X, U, i8 the least neighbourhood of z, and k 18 the greatest
natural number with the property that there ewists de U, ~ U, such that
ay-dim Ug = k.

Proof. The first two equalities follow by Lemma 1. In particular,
the germ a is the only element 2 of X for which a,-dim U, = 0.

Now let d be the point of U, ~ U, such that ¥ = a,-dim U; is the
greatest natural number. Then d is the greatest element of x preceding
b and ¢, and to obtain the second equality it suffices to apply (2).

LEMMA 2. Let Y be a stem consisting of two finite linearly ordered
sets by 3b; 3...3b; and ¢y 3¢, 3... 3 Ckyg, where k>1, 8>0,
by = ¢y, and let no b; be comparable with any c; for ¢ =1 and j > 1.

If Y s provided with a proper topology, then

y-dimY < k+s for all yeI’
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and there exists unique (up to the first k+s places) Bel’ such that
B#a and p-dimY =k+s.

More precisely, f, =1 and f; =0 for 1 =2,3,...,k+s.

Proof. We ghall construct step by step a y-sequence of a maximal
length. The best choice for H, is either any point b; or a closed subset
of {b,y, by,...,b;}. In the first case we have y; = 0 and

Hy, ={b}, Uy ={boybyy...yb}y Fy={biy1y.ee,bi} v {€1,€zy..yChiq}

Since both sommands of #, are obviously non-void and closed-
-open subsets of F,, then

y-dim F;, = max[y-dim{b;,,, ..., bi}, y-dim{ec,, ..., Crx s}]

for all yeI'. As {b;,,, ..., bx} is homeomorphic to the subset {c,, ..., cx_s}
of {¢;,...,Cris}, We have

y-dim{b; .y, ..., bi} < p-dim{ey, ..., Cxpa})

and therefore we may neglect the first sommand. Hence, practically,
we are left with {c,, ..., ¢xys}.

In the second case we have y, =1 and H, = H, where H = H
c {bo, ceey bk}, U1 = {bo, ceny bk} and F1 = {01, ceey Ok+3}.

Having made any other choice for H, (i.e. choosing a point ¢; or
a closed subset of {c;, ..., ¢k s}) We are left with a proper subset of {c,,...,
¢xysy With adjoined to it set {b,, ..., by} which — as we just have seen —
has the less y-dimensional value that {c,, ..., cr s}

In both cases the best choice for H, is ¢,, because we have then
H, = {¢,}, U, = {c;}, and F, = {¢,, €3y ..., Cxys}. Having made any other
choice, we are left with a proper subset of #,. Since ¢, is not closed in F,,
then we have y, = 0.

Now it is easy to proceed further on. Namely, the best possible
choice in any subsequent step is the first element relative to order, which
gives us

Hi+1 = {ci}; Ui+1 = {01:}7 Fi+1 = {0i+17 EXY) ck+s}) and YVig1 = 0
for all + =1,2,...,k+s—1, and
Hk+s+1 == {ck+s}, Uk+s+1 = {0k+s}’
Frie.1 =90, and 9y, =0 or 1.

By Corollary 1 of [3] we have then y-dimY = k| s for the best
yel', and since y; may be equal to 1, the Lemma is proved.
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THEOREM 4. Let X be a stem, and b and c two incomparable poinis
of X such that n*(a, b) < n*(a, c), where a denotes the germ of X. If V is
the least neighbourhood of b and ¢, then

y-dimV < n*(a,¢) for all yel,
and there exists a unique (up to the first n*(a, c) places) BeI' such that
B#a and B-dimV = n*(a,c).

More precisely, f; =0 for all i =1,2,...,n*(a,c) except for the
greatest k with the property that there exists xeX such that v 3 b, x 3 ¢,
and n*(a,x) = k.

Proof. The set V is a union of the least neighbourhoods of b and ¢,
and therefore can be written in the form

ap = bk -3 bk+1 =L .0 bk+l = b,
a=0,<3a;3 ... 3 a
G = Ck | Cpy1 <83 ¢vv 3 Ckyiym = C.
We shall construct a y-sequence of a maximal length. The best
point to start with is ¢ = a,, because we have then

H, ={ay}, U,={a}, F,=7V—{az.

Having made any other choice for H, we are left with a proper,
subset of F,. Since a, is not closed in Y, we get y, = 0.

In analogical way we may proceed further on. Namely, the best
possible choice for H;, ,, where ¢ =1,2,...,k—1, is the least element
left, that is

Hipy ={a}y, Uiy ={a}, Fipy = F;—{ai}.

All the time we have y; = 0.

At last we come to F), = V—{a,,...,ar_,}, which is a set Y of
Lemma 2. Applying it, we complete the proof.
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