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1. Introduction. In this paper we consider the behavior of a Green’s
function g(z,t; y, s) associated with the nondivergence form parabolic oper-

ator
n

L = Z aij(zat)Digzj o
1,7=1
and with the cylinder B X R. Here B is a ball contained in R®, R is the
real line, z belongs to R", and ¢ belongs to R. About the matrix a(z,t) =
(aij(z,t)), we assume it is symmetric. and there exists A, 0 < A < 1, such
that forallz e R*, £ €R", and t € R

n
1
A2 < .;::1 aij(z,t)6:; < Xlﬂz-
The parameter A will be referred to as the parameter of parabolicity of L. We
will assume the coefficients a;;j(z,t) are smooth functions, but it is only in
terms of the quantities A and n that we wish to describe a control of the zero
set of g(z,t;y,s) in the adjoint variable (y,s), y € R®, s € R. Specifically,
we prove the existence of positive numbers M) and c,, depending only on
A and n, such that for every measurable set I' C Cy = {(y,3) : |yi| < 1/2,
i=1,...,n,0< 3<1}and for any B with center the origin and containing
Q:={y:|vil<1,i=1,...,n}, we have

(1.1) [ 9(0,2;y,5)dyds > ;| T|M>,
r

where |I'| denotes the Lebesgue measure of I'. This estimate is a refinement
of a related result due to N. V. Krylov and M. V. Safanov. In [7] they
announce a lower bound for the above integral with ¢,|I’|M* replaced by a
function ¢(|I'|) satisfying ¢(t) > 0 for t > 0.



638 E. FABES ET AL.

In case the coefficients of the operator L are independent of time,
g(z,t;y,8) = g(z,t — s,y) and an estimate like (1.1) holds for each fixed
time with I’ any measurable subset of the unit cube in R*. While this last
statement is a consequence of (1.1) and Harnack’s inequality [8], it is also a
consequence of the earlier work [4]. However, the estimate corresponding to
(1.1) for fixed times, say for the function g(0,2;y,0), and I" any measurable
subset of the unit cube in R™, is not possible for parabolic operators with
time dependent coefficients. In these cases the measure on R™ describing
solutions of the classical initial value problem can be carried on a set of
Lebesgue measure zero [3].

A general outline of the paper is as follows: Section 2 is primarily a

preparation for the proof of the main inequality (1.1). However, the one new
result of Section 2, Theorem 4, may be of independent interest. It describes
a Harnack inequality satisfied by the quotient of a nonnegative solution of
the adjoint parabolic equation which vanishes on the lateral boundary and
a Green’s function corresponding to the same operator.
» Section 3 is devoted to the proof of (1.1) and Section 4 discusses ap-
plications to a priori bounds for smooth functions u(z,t) vanishing on the
parabolic boundary of B; x (0,1). (B, denotes a ball of radius » > 0.) In
Section 4 we prove the existence of positive numbers C and ¢, depending
only on A and n such that for all © described above,

1 1
[ [ IVeu(z, ) dedt+ [ [ |D%, u(z,t) dzdt
0 B, 0 By

1
SC,\[f Bf | Lu(z,t)|"H?

] exr/(n+1)
0

The elliptic analogue of this estimate was proved by L. C. Evans [2] for the
gradient and by Fang-Hua Lin [9] for the second derivatives. (See also [12]
for the parabolic case.)

2. Comparison results and a property of adjoint solutions. In
this section we first state three results from [5] concerning properties of
nonnegative solutions of parabolic equations which vanish on the lateral
part of a cylinder. As a consequence we will prove a Harnack inequality for
suitable quotients of adjoint solutions (see Definition 1 and Theorem 4).

-Let B be a ball in R®, centered at the origin, and set
Dr=Bx(0,T), Dst=Bx(6§T) (6>0).
Recall L = 3°7._, aij(z,t)D2 ;. — D:.

THEOREM 1. Let u be a nonnegative solution of Lu = 0 in Dt which
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vanishes on 0B x (0,T), T < Ty. Fiz a compact K. C B. Then there
erists a constant C depending only on A, n, §, Ty, the diameter of B and
the distance of K to 0B such that

supu < C inf w.
Ds, T Kx(6,T)

THEOREM 2. Let u, v be two nonnegative solutions of Lu = 0 vanishing
on OB x (0,T) with T < Ty. Fiz a compact set K C B. Then there ezists
a positive constant C depending only on A, n, §, Ty, the diameter of B and
the distance of K to OB such that

sup ufv < C inf u/v.
Ds,t K x(6,T)

THEOREM 3. Let u be a nonnegative solution of Lu = 0 in Dt vanish-
ing on OB x (0,T) with T < Ty. Then there ezists a positive constant C
depending only on A, n, §, Ty and the diameter of B such that

~1u(0,T') < 8, u(ep,s) < Cu(0,T")

for every (p,s) € 9B x (6,T) and every T', § < T' < T; 0,, denotes
the conormal derivative, i.e. v, = a(yp,8)(N,) where N, is the unit inner
normal to OB at ¢.

We now consider adjoint solutions of parabolic operators. We say that
v = v(€,7) is an adjoint solution of L in Dt if v satisfies the equation

n
L*v(§,7) = Drv(€,7) + Z Dg.-ej (aii(&,m)v(€,7))=0
i,j=1
in DT. -
Let B be a large ball containing B and denote by g5(z,;£,7) the Green’s

function for L in the infinite cylinder with cross-section B. As a function
of the second set of variables (§,7), gz(z,t&,7) is a nonnegative adjoint

solution in the punctured cylinder B x (00, 00) \ {(z,t)}.

DEFINITION 1. If v = v(€,7) is an adjoint solution in Dt the function

R (%))
o) = AR 6T

is called a normalized adjoint solution for L in Dr. Quotients of this type
are the analogues of those introduced by P. Baumann [1] in the elliptic case.

Ae B\B, R>2T,

THEOREM 4. Suppose w is a nonnegative normalized adjoint solution for
L in Dr, vanishing on 0B x (0,T) with T < Ty. Let (§&1,71) and (&2,72)
denote two points in Dy with Ty — 7y > 1> 0and T — 1 > pu > 0. Then
there ezists a constant C depending only on A\, n, Ty, 7, p, the diameter
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of B and on min|[dist(§,,dB), dist(£2,3B))] such that
w(&l’ Tl) S C‘ID(Ez, TZ)-

Remark. We point out that the constant C' in Theorem 4 does not
depend on the diameter of B or on the point (A, R) € (B \ B) x [2T, o).

Proof. The following representation formula holds for w in Dr:

1
@) wEn)= e Bf 95(z, T;€,7)95(A, B; 2, T)u(z, T) dz.

Furthermore, since gE(A, R;-,-) is an adjoint solution in Dr, we can write

(22) 95(A,Ri&,m)= [ gb(z,T;€,7)g5(A, Riz,T)dz
B

T
+ [ 8 { By, 98(, % €,7)- g5(A, R; p,8) dpds,

where 3,, denotes the conormal derivative in the variables (¢,s). 'If
To = 3(T + 72), by Theorem 2, we have

gB(zv Ta £2a T2) ~ gB(O’ TO; £2a T2)
gB(zaT;flaTl) gB(OaTO;gl’Tl)
for every z € B, with equivalence constant depending on A, n, T3, u and the

diameter of B. On the other hand, using Hopf’s Lemma [10] and Theorem 3,
we have

(2.3)

T
(2'4) f f av, gB(‘P’ S, £27 b )gE(Av R; ') 3) d‘P ds
T3 oB

T
<C [ [ 98(0,To;&,72)95(A, B; 0,5) depds
T2 8B

T

gB(O’T0;£2aT2)
<C i ,8;€61,1)95(A, R; ¢, 8)dpds,

with C depending on A, n, Ty, g, 1, the diameter of B and min[dist(¢;,dB),
dist(&;,0B)). Using (2.3) and (2.4) in the representation formulas (2.1) and
(2.2) we easily conclude the proof.

3. The main result. To state and prove the main result of this paper
we need to introduce some notation. Set
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B.(zo) = {z€R":|z-20| <1},
Cr(z9) = {z €R" :Ala:j —zoj|l < j=1,...,n},
Q+(z0,%0) = Cr(z0) X (to — 2, 10),
Q¥ (zo,t0) = Cr(zo0) X (to + 72,10 + 27%),
Q7(z0,t0) = Cr(z0) X (to +3r%, 80 +r2/n), 0<n<1/3.
A rectangle like Q,(zo,1o) will be called a parabolic cube. Also set g(y,s) =
98(0,2;y, s), where gp is the Green’s function for L and the cylinder By, X

(—00,00). (We choose B;, only to guarantee that C2(0) C Bs,.)
For any measurable set I" contained in @; = Q1(0,1) define

w(I)= [ g(y,s)dyds,
r

and denote by |I’| the Lebesgue measure of I'. In this section we will prove
the following result.

THEOREM 5. There ezxist two positive constants ¢ and M depending only
on X and n such that w(I') > c|T|M.

Proof. We first show that there exists £, 0 < £ < 1, depending only on
A, n such that if |I'| > £ then w(I') > ¢ = ¢(), n) and therefore w(I') > ¢|I|.
Consider the function

w™(I) = ng,_(a:,t; y,8)dyds
r

and write w™(I') = w*(Q;) — w™(Q, \ I'). Hélder’s inequality gives

w*H (@1 \ 1) < |Q1 \ T |lgp,, (2,8, )| Lcns13n(q,) -

From the work of Krylov [6] (see also Tso [11]) ||gB,, (2,t;-, M +1yn(qy) <
C(A,n) for all (z,t) in B;, X (0,00). Hence

(3.1) w™ (@1 \ ') < C(\,n)(1- E)l/("“)

for every (z,t) € Bz, X (0,00). Choose ¥ € C§*(@1), 0 < ¥ < 1,
¥ = 1 on @;/2(0,1/2). A maximum principle argument gives w**(Q,) >
¥(z,t)/||LY||L=(q@,) for every (z,t) € Q1. Therefore w**(Q,) > ¢(A,n) on
Q1/2(0,1/2). From this inequality and (3.1) we conclude that, for £ close
enough to 1, w(®O(I') > ¢(A,n) on Q1/2(0,1/2).

The maximum principle and Harnack’s inequality imply w(I') >
c(A,n) > 0.

From now on we keep § fixed according to the previous argument and
we assume |I'| < £. In this case we can apply a parabolic version of the
Calderén-Zygmund decomposition lemma to construct a sequence {Q;} of
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parabolic subcubes of @;, pairwise nonoverlapping, with the properties:
[T nQ;l > €1Qjl, '\ UQ;| = 0; each Q; arises as a subdivision into
2"+2 congruent (parabolic) subcubes of another parabolic subcube 6 ; with
the property |I' N é,l < €@ il- We call éj the antecedent of @; and the
union of the Q j can be written as a union of nonoverlapping ones. We still

denote by {é x} the family of these nonoverlapping parabolic cubes and we
set D = |J, Qx. Now

(3-2) wl)=), [ g(y,5)dyds.

i InQ;
Write QJ = Qr’. (zj,tj), 61 = Q2r,-(-'ijs{j)’ a‘nd set gJ(y’ 3) = gBQurj(zi)(zj’
t; + 2r§ /n;y,38). For each j, Theorem 4, after translation and dilation, gives

[ oy, 8)dyds > e H0ir %) [ 9i(v,9)dyds,
rnQ; gj(y.‘ia 3,1') rnQ;

where (y;,8;) is any point of Q:}' and ¢ depends only on A and n. Since
|I'Nn@Q;| > £|Q;|, we can appropriately dilate and use the first part of this
proof to obtain

[ 9i(v,s)dyds~ [ gi(y,s)dyds~ [ gi(y,s)dyds,
rog; Qi Qr

where the equivalence constants depend only on A, n and 5. Also from
Theorem 1, ¢(0,2;y;,3;) ~ 9(0,2+ 2/n;y;,8;) with the same equivalence
dependence. Hence

0,2+ 2/n;y;,8;
f 9(y,s)dyds > cg( < /ﬂ -yJ i) f 9i(y, s) dyds.
rnQ; 9;(yj, ;) =

2

Another application of Theorem 3 gives

(3.3) w(l) 2 e\ n,m)Y. [ 9(0,2+2/n;y,5)dyds
J 6;1

> (A, n, )" (|J@7) = (A, n, myw(D),
J

where w"(E) = [ 9(0,2+ 2/n;y,s)dyds, D" = U; é;’
We now distinguish two cases that we treat by means of the following
lemmas:

LEMMA 6. Suppose that for some fized positive § we have
(3-4) |D7\ @] > 6|I'|.
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Then there ezists a éz such that
(3.5) Q%1 > c(n,n,8)|T|("+172,

Proof. Let r; be the side length of QZ Either there exists k such
that r2 > (6/6)|I’| (and in this case (3.5) holds) or for each k the opposite

inequality holds. If this is the case, observe that there must be a éz whose
side length is greater than (§/2)|I'|. In fact, the bottom level of each Q7 is
less than 1+ (6/2)|I'|; if each @7 had top level less than 1+ §|I'| we would
have

D"C QiU (B1 x (1,14 6|I))
and therefore | D" \ @] < 6|F|, which contradicts (3.4). We conclude that

there exists ¢ = ¢(7, 6) and a Q7 whose side length r satisfies the condition
e > ¢(n,6)|'|*/2. This shows (3.5).

LEMMA 7. There ezist positive numbers c, 6, 1, p with n < 1/3, p > 1,
depending only on A, n, such that if |D" \ Q.| < é|I'| then w(I') > cw(Iy)
where It C @ and || > p|I'|. (In fact I = D"N Q,.)

Proof. From [8, Lemma 2.2, p. 157] we have

||1317
~ 1479

DI

Set It = D"N Q,. Then

1-39
> —
111> 52pl - 4,
and since || < Y, Ifﬂékl < EE,, |ék| = €| D|,

|| 2

el L}
Now set

_1-39

T (14 n)

Choose 6, 1 small enough to have p > 1 and then use Harnack’s inequality
[7] in (3.3).

We now conclude the proof of Theorem 4. Choose 7 and § according to
Lemma 7. If (3.4) holds, select a QZ for which (3.5) occurs. From Theorem 1

J 90,2+ 2/n;y,8)dyds > ¢ [ g(3x,2+2/n;y,5) dyds.
H Qr

O
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We clearly decrease the last integral by replacing g by gp,, r (1) We then
translate and dilate appropriately and apply Harnack’s inequality to obtain

[ 9Bsur, (20)(%k:2+ 2/m;y,8) dyds > | T|M
Q)
where ¢ and M depend only on n and 7.
Assume now | D"\ @;| < §|T'|. By Lemma 6 we have either

w(I) 2 (A, n)|T|M = | T|M
or
w(I') > ¢(A, n)w(l}) = cw(ly),

with I1 C @, and |I1]| > p|I'|. In the second case repeat for I} the entire
procedure done for I'. Again we find either w(I}) > c|I1|M, and, therefore,
w(I) > 2pM|I' M, or w(I7) > cw(Iz) where I C @y and |I3] > p|Ih| >
p%|I’|. Proceeding in this way we construct a sequence of sets {I';}, stopping
the process either when

w(Ix) > e Tx|M
and therefore w(I’) > c*+1p*M|I'|M | or when
p* < E/IT) < p*.

In this last case we have |I'x| > p*|I’| > £ and hence, w(I;) > &(A,n). Since
w(l') > ckw(I}) and k ~ (1/logé)log(€/|I)), we conclude that w(I') >
(A, n)|[T|M with M = M(),n).

A simple consequence of Theorem 5 is the following integrability property
of the Green’s function g.

COROLLARY 8. There ezist two positive constants g and C depending
only on n, A such that

(3.6) [ 97=(y,s)dyds < C.
Q

Proof. Let I = {(y,3) € @1; 9(¥,8) < 1/t}° then Theorem 5 gives

dr™ < [ g(y,s)dyds < -ml
I

or |Iy| < ¢(n, A)t~1/(M=1)_ We conclude that (3.6) holds with eo = 1/M.

4. Estimates on the first and second derivatives of solutions of
Lu = f. In this section, following the technique of L. C. Evans [2] and F. Lin
[9], we give a priori estimates in terms of Lu of a small positive power of first
and second spatial derivatives of functions 4 which vanish on the parabolic
boundary of a cylinder. These results are achieved by first establishing an
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L?-integrability of a first order derivative and an L!-integrability of a second
order derivative, each with respect to a measure g(y, s) dyds where g is a
Green’s function associated with a parabolic operator.

Let us begin with the spatial gradient estimate.

Set D, = By x (0,1) and ¢(y,s) = ¢8,(0,2;y,s), the Green’s function
corresponding to B; and the operator L with smooth coefficients.

THEOREM 9. Assume u = u(z,t) is a smooth function in D, vanishing
on the parabolic boundary 8,D,. Then there ezists a positive constant C
depending only on A and n such that

J V202 < CllLul}inp,) -
D,
Proof.

1 n
[ IVauftg < 5 f E a:j(z,t)(Dz,u)(Dy,;u)g dz dt
D, D, i,5=1

1 1
= — L(uz) -— Lu)g.
x J Lede- 3 J b

Since u = 0 on 3,D; and g > 0 inside D,, an integration by parts yields
fD, L(u?)g < 0. Therefore

1
[ IVzulg < Telleopllgllizeniimpy I LullLasr(p,) -
D,
The conclusion follows easily from the result of Krylov [6]. (See also [11].)

COROLLARY 10. There ezist two positive constants C and o depending
only on A, n such that for any smooth u vanishing on 8,D,,

(4.1) J Vol < CllLuf|znsr(p,) -
D,

Proof. By Corollary 8 there exists ¢ such that [ D, 97 ° <¢(A,n). Then
(4.1) follows from Theorem 9 and Holder’s inequality with o = 2¢/(1 + ¢€).

We now consider second derivatives. Set Dy, = Bys % (0,1/2).

THEOREM 11. There ezist positive constants C and o depending only on
A, n such that for every smooth function u vanishing on 8,D, we have for
,j=1,...,n

(4.2) J D% ul” < ClLullfunp,) -
Dyy3
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Proof. Using an observation of Fang-Hua Lin [9, p. 449, (2.3)] given
u and L we can construct an operator L, with coefficients depending on u
such that

(4.3) Lyu(z,t) = Lu(z,t) + 7(z, t)|| D3u(z, t)||
where 0 < C(A)™! < y(z,t) < C()) < oo and

: n 1/2
1D2u(z, 0l = [ 3 1024z, 00] .
1,7=1
Moreover, the parabolicity constant of L, depends only on that of L.
We now construct a Green’s function for L, in D; with pole at (0,1).
More precisely, we construct a function g4(y, s) = gL, (0, 1;y, s) with tle
following properties:

(i) 0 S gL.,Bx (0’ l; Y, 3) € L("+l)/n(D1) a,nd
J {91..8:(0,1;9,8)}"V/"dyds < C(A, n).
D,
(ii) There exists € = (A, n) such that
f 9z B,(0,1;y,8)dyds < C(A, n).
Dj;2
iii) If v is a smooth function vanishing on d,D; then
(iii) g P
v(0,1)=— [ g1,,8,(0,1;9,8)Luv(y, ) dyds.
D,

To construct such a function we first regularize the coefficients of L, and
denote by L* the resulting operator. Let gx(y,s) = 91+.8,(0,1;y,8). Again
we have

(4.4) llgklla+1a(Dy) < C(A,m),

so that a subsequence converges weakly in L("+1)/"(D,;) to a function g,
which satisfies (4.4). Clearly (ii) holds for g, since Theorem 5 holds for g,
with constants depending only on A and n. Also property (iii) is a conse-
quence of the fact that it holds for every gx. Then, from (4.3) we have

-u4(0,1) = f 94(y, 8)L,u(y,s)dyds
D,

+ [ 9u(y,9)7(3,9)IID?u(y, s)|| dyds.
D,
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Using once more [6] or [11], property (i) of g,, and the lower bound for 7,
we conclude

[ 9u(,9)|D2u(y, 8)|| dyds < c|| Lu||L~+1(D,) -
D,

The same argument as in the proof of Corollary 10 gives (4.2) with
o=c/(1+e¢).
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