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0. Introduction. The problem of extending metrics or complete me-
trics has been investigated by several authors, e.g., Hausdorff [11], [12],
Bing [8], Arens [1], Bacon [5], Toruniczyk [18]. The following theorem
i8 known:

THEOREM (. Let A be a closed subset of a metric space X with a metric d.
If o 18 any metric on A equivalent to d on A, then o can be extended to a meiric
@ on X which is equivalent to d.

Moreover, if d and o are complete metrics, then g can be taken to be
complete.

In this note we consider the question under what assumptions the
metric ¢ can be extended to a metric on X which is uniformly equivalent
to d (i.e., induces the same uniformity as d). The following example shows
that such an extension need not exist, even if ¢ is uniformly equivalent
to d on A.

Example. Let B denote the real line, N — natural numbers, and
let the metric ¢ on N be defined by

g(m, n) = |m*—n?|.

It is clear that p is uniformly equivalent to the metric || on E. If
¢ were any metric on B which extends g, then, for each n € N, since
o(n, n+1) = 2n+1, there would exist points z,, 9, € [», »+1] such that
[, — ¥, <1/ and g(2,,9,)=>1. This shows that no extension of ¢ is
uniformly equivalent to |-|.

In this note we prove that under some additional assumptions the
metric p can be extended over X. In Section 1 we give a short proof of
Theorem 0. The ideas of that proof will be used further on. In Section 2,
which contains the main result of this note, we prove that if A is a subset
of a metric space (X, d) and p is a metric on 4 uniformly equivalent to
d|A x A, then g can be extended to a metric g on X uniformly equivalent
to d if and only if there is a uniformly continuous pseudometric § on
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(X, d) such that p{ 4 Xx A = p. Thus the problem of extending ¢ uniformly
is related to that of extending a certain uniformly continuous map. Using
this, we apply in Seetions 2 and 3 the results of Aronszajn and Panitchpakdi
[2], Katétov [15], Ramer [17], and Atsuji [3], [4] to get some sufficient
conditions for the metric p to have the required extension (e.g., if o is
bounded, then that extension does exist).

The author wishes to express his sincere gratitude to H. Torunczyk
for his help during the preparation of this note and for many valuable
remarks.

1. Proof of Theorem 0. For a set D, let m (D) denote the space of alk
bounded real-valued functions on D (with the supremum norm).
In the notation of Theorem 0 we define a map j: X — m(X) by

(Je)y = d(z,y)—d(zo,y) forx,yelX,
where r, is any fixed point in A. Let further f: A - m(A) be defined by

(fr)y = o(®, y)—e(wo,y) for z,yeAd.

It is well known [7] that j: (X, d) > m(X) and f: (4, ¢) >m(A)
are isometric embeddings.

By a Dugundji theorem [10] there is a continuous map f : X >m(4)
with f|A = f. Define now a map g: X —m(4) xR by

g(x) = (f(a")y d(xz, A))
It is clear that g(A) is closed in g(X) and ¢g| 4 is an isometric embed-
ding of (4, p) into m(A4) X R.
Using the Dugundji theorem again, we take a map u: g(X) >m(X)
with ug(z) = j(x) for every # € A. We now define g by

1) el@, ) = lg@)—g@+13(@)—j(y) —ug(@)+ug(y)ll: forz,ye X,
where |||, is the norm of m(A) X R and |-[|; is the norm of m(X). It is
easy to check that g extends p and is equivalent to d.

If, moreover, (X, d) and (A4, o) are complete metric spaces, then
g(A4) is closed in m(4) x R and, therefore, 4 can be taken as a map from.
m(A) X R into m(X).

Let {z,} be a g-Cauchy sequence of points in X. Then, by (1), {g(x,)}
is a Cauchy scquence of points in m(4) x R. Hence {g(xz,)} converges to
a point of m(4) X R. Since u is continuous, we infer that {ug(x,)} is a Cauchy
sequence in m(X). Thus by (1) we get

- hm d(a'n7 mm) = lim ”,7 (mn) _j (‘vm)” = 0.
n,M—>0 7, M—>00

Since (X, d) is complete, there exists a point x,e X such that
limd(x,, ,) = 0. And since g is equivalent to d on X, we get o(x,, z,) — 0;
this shows the completeness of g and completes the proof of the theorem.
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2. Uniform extension of metrics. In the sequel we need the following
lemma duec to Banach [6], Aronszajn and Panitchpakdi [2], Cipszer and
Geher [9]:

2.1. LEMMA. Let (X, d) be a metric space, let A be a subset of X, and let
f be a Lipschitz map from A into m{(D) for some set D. Then there exisis an
extension f: X — m(D) of f which satisfies the Lipschitz condition with the
same Lipschitz constant as f.

2.2. THEOREM. Let A be a subset of a metric space (X, d) and let o
be a metric on A uniformly equivalent to d on A. Then the following conditions
are equivalent:

(a) There exists a uniformly continuous pseudometric g on X such that
g(@,y) = o(x, y) for every x, y € A.

(b) There exists a metric g on X uniformly equivalent to d on X and
such that o(x,y) = o(x, y) for every x, y € A.

Proof. Of course, we have only to prove that (a) implies (b). Let ¢
denote a uniformly continuous pseudometric on X which extends p.

Define g: X — m(X) by (gz)y = min{l, d(x, y)} for =,y € X, and
let g, = g|A. Then g,: (4, ¢) > m(X) is bounded and uniformly contin-
uous. By a theorem of Katétov [15] there exists a uniformly continuous
map §,: X /6§ - m(X) such that, denoting by n: X — X /5 the natural
projection, we have g,#|A = g|A and

sup |igom(z)| = sup |llg,m(x)].

reX x€A

We now define g by
(2) ¢(z, y) = max{g(@, y), llg(®)—g(y)—gom (@) +om(y)}.

It is easy to see that g is a metric on X which extends o; let us show
that p and d are uniformly equivalent.

Assume that d(z,,y,) > 0. Since ¢ is uniformly continuous with
respect to d and g,: (X /6, ¢) > m(X) is uniformly continuous, we get
Igon(2,) —Gom(y,)ll — 0. And since |g(x,)—g(y,)| -0, we infer by (2)
that o(2,, ¥,) = 0.

Conversely, let g(z,, ¥,) — 0. By (2), o(2,,v,) — 0. By the uniform
continuity of §,: (X /¢, 6) > m(X) we have

[Go7 (2,) —Gom (¥,)il = 0.

Therefore, by (2), llg(2,) —9(¥,)ll = 0. Thus d(z,, y,) — 0. This shows
that d and p are uniformly equivalent. The proof is completed.

Remark. In the notation of Theorem 2.2, there are increasing sub-
additive functions a,, a,: [0, o©) - [0, c0) such that a; < a,, lim g(#)
t—0
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=0 = ¢(0) for + =1, 2 and
(3) e d(z,y) < ¢(,y) < ayd(z,y) for v,yed,
then by Lemma 2.1 there exists a pseudometric § on X such that
o(z,y) < a,d(z,y) for v,yeX.
Hence the formula
o(z,y) = max{g(x, y), a;d(x,y)} foraz,yeX

defines a metric ¢ on X which extends ¢ and satisfies (3), with ¢ replaced
by @ for all #, y € X. In particular, if ¢ is Lipschitz equivalent to d| 4 x A4,
then o can be extended to a metric ¢ on X which is Lipschitz equivalent
to d. However, if p is merely assumed to be uniformly equivalent to
d|A XA, then the functions a,, a, satisfying (3) need not exist.

2.3. COROLLARY. Let A be a subset of a metric space (X, d). Then the
Jollowing conditions are equivalent:

(a) Any uniformly continuous map f: (A, d) - m(A) has a uniformly
continuous extension f: (X, d) — m(A).

(b) Any metric o on A uniformly equivalent to d| A X A can be extended
to a metric p on X uniformly equivalent to d on X.

Proof. (a) = (b). Let ¢ be a metric uniformly equivalent to d on A.
The map f: (4, d) - m(A4), defined by

(fr)y = e(w, y)—eo(®,y) 1for z,yed,

i§ uniformly continuous. By (3:)’ there exists a uniformly continuous map
f: (X,d) > m(A) such that f|A = f. Putting

é(z,y) = If(@)—Ff)l,

we get a uniformly continuous psendometric ¢ on X which extends p.
From 2.2 it now follows that there exists a metric g on X which is uniformly
equivalent to d and extends p.

(b) = (a). Let f: A - m(A) be a uniformly continuous map. Putting

o(x,y) = |f(x) —f¥)l+d(z,y) forz,yecd,

we get a metric ¢ on A which is uniformly equivalent to d| 4 x A. By (b),
there is a metric g which is uniformly equivalent to d on X and extends p.
Since f: (4, g) > m(A) satisfies the Lipschitz condition, there exists,
by 2.1, a Lipschitz map f: (X,g) -m(A4) such that f|4 =f and
If (@) —f(y)I| < 8(x, y) for all ,y € X. It can easily be seen that f is uni-
formly continuous with respect to the metric d, as required.
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2.4. PROPOSITION. Let A be a subset of a melric space (X, d) and let o
be a metric uniformly equivalent to d on A. Assume further that

(4) lim supt™! o 4(t) < oo,
f—+00 - .
where
(6) wya(t) = sup{e(x, v), z,y € A: d(w, '.'/) i}.

Then there exists a metric g on X which 18 uniformly equivalent to d and
extends .
Proof. By a lemma of Aronszajn and Panitchpakdi [2], condition (4)
implies. that there is a subadditive function ¢: [0, o) — [0, oc) such that.
lim p(?) = 0 = g(0),

{0
() >0 for t>0,
and
@(t) = w,(t) for every te[0, oo).

Let f: A > m(A4) be a map defined by

(fe)y = o(=, y)—e(®, ¥) for z,yed.
We then have

"f(-'l’)—f(y)“ = o(®,y) < @d(w,y) forallz,yed.

Equipping X with the metric d defined by d(z,y) = ¢(d(, y)),
we see that f: (4, d)—>m(A) is a Llpschltz map. Thus, by 2.1, there is.
a map f: (X, d) - m(4) such that ||f(z) —f(y)Il < ¢(d(z, y)) for =,y € X.
Clearly, f is uniformly continuous with respect to d. The result follows
from 2.2,

2.5. COROLLARY. Let A be a subset of a meiric space (X, d). Then any
bounded metric o on X uniformly equivalent to d| A XA can be extended to-
a metric o on X which is uniformly equivalent to d on X.

Proof. If g is bounded, then
lim t—l wald(t) = 0.

t—>o00

3. The unlimited uniform extension property for metrics.

3.1. Definition. Let d and ¢ be metrics on a set A uniformly equi-
valent to each other. We say that ¢ has the unlémited uniform extension-
property with respect to d if for every metric space (X, d) containing
(4, d) isometrically there exists a metric g on X which is uniformly equi-
valent to d on X and extends p.

3.2. THEOREM. Let d and o be meirics uniformly equivalent to each
other on a set A. Then o has the unlimited uniform extension property with-
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respect to d if and only if
(6) lim Supt'lweld(t) < 00,

t>o0

Proof. If (6) holds, then by 2.4 we infer that ¢ has the unlimited
uniform extension property with respect to d.

Conversely, assume that (6) is not true and let T': (4, d) >m(A4)
‘be a map defined by

(Tr)y = e(x, y)—e(wo, y) for z,yecd.

Then T is uniformly continuous and w,(?) is a modulus of continuity
of T. By a theorem of Aronszajn and Panitchpakdi [2] there exists a metric
space (X, d) containing (A4, d) isometrically and such that 7 cannot be
extended to a uniformly continuous map T: (X, d) - m(4). It can easily
be seen that p cannot be extended to a metric g on X which is uniformly
equivalent to D and X.

3.3. Definition (Atsuji [3], [4], Ramer [17]). Let (X, d) be a metric
space. A finite sequence {z;}; , of points of X is called an e-chain of length n
provided that d(x;, x;_,) < ¢ for ¢ =1, ..., n. We say that (X, d) is finite-
ly chainable if for every ¢ > 0 there exist finitely many points a,,..., a,,
of X and a positive integer n such that any point of X can be bounded
by an e-chain of length » with some of the points a,, ..., a,,.

We say that (X, d) is 0"-connected if for any ¢ > 0 any two points
of X can be bounded by an &-chain in X. If (X, d) is 07-connected, we put
for ¢ >0

d,(z,y) = inf{Z d(@;, 2;_,), @ = @y, @, =y:
i=1
d(z;, ;_,)<efor i =1, ...,n}.

Obviously, d, is a metric on X uniformly equivalent to d on X. We
say that (X, d) is uniformly 0" -chainable provided that, for any & > 0,
d, is Lipschitz equivalent to d.

3.4. THEOREM. Let (A, d) be a metric space. If (A, d) is either finitely
chainable or uniformly O%-chainable, then every melric o om A uniformly
equivalent to d has the unlimited uniform extension property with respect to d.

For the proof we apply 2.3 and the results of Atsuji [3], [4] and Ra-
mer [17] concerning the extension of uniformly continuous functions.

3.5. COROLLARY. Let (A, d) be a metric space. If (A, d) 8 either compact
or convex in a sense of Menger (1), then any metric o on A which is uniformly
equivalent to d has the unlimited uniform extension property with respect to d.

(1) That is, every pair of peints of 4 can be joined in A by an arc isometric
to a segment of the real line (sce [16]).
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Let us note that 3.5 follows also from 2.5 and 2.4. (If (4, d) is convex,
then the function is subadditive, and hence lim ¢t~ w,;(f) < 0.)

t—>00
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