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NSOME REMARKS
ON THE ITERATES OF THE ¢ AND o FUNCTIONS
BY

P. ERDOS (BUDAPEST)

Put o,(n) = o(n), ¢,(n) = ¢(n) and, for £ >1, or(n) = o‘l(ok_l(n)),
gr(n) = @, (‘Pk—l(n)) .
Schinzel conjectured that for every k

A
n

(1) liminf

Makowski and Schinzel [2] proved (1) for £ = 2. In fact, they showed
(among others) that
02(n) pa(n)

=1 and limsup
" n

liminf

o | H

At present, I cannot prove (1) for £ = 3, but I show the following
differences between the cases k = 2 and &k — 3. Denote by N,(k, a,x)
the number of integers n <  x for which

pr(n) > an,
and by N,(k, a, ®) the number of integers » < x for which
ap(n) << an.

THEOREM 1. For every a << %, arbitrarily small ¢ > 0 and arbitrarily
large t we have for @ > xy(a, 1, &) the inequalities

r

(2) (loglog®)' < N,(2, a, ) <

log 2)¢:
log x logx (logx)’s

further, for every o >0 and >0, we have for v > xy(a, ¢)

(3) N,(3,a,2)< 5 (logx)®.

o
(loga)
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THrOREM 2. We have for every t if @ > x.(t
3 . 0

T
(4) No(2,2,2) > -—r (loglogg:.r.)'E
logx

and for every a =0 and & >0 if x> x,(e, a)

() N,(2,a,2)< lalg—v (logx)*, N (3, a,x) < W (logx)®.

For » >>2 we have ¢,(n) < n/2, thus, in Theorem 1, o < L is the
best possible.

Before I prove these theorems, 1 would like to make a few remarks.
Let p > 2 be any prime (throughout this paper p, ¢ and r will denote
primes). Denote by @, the set of all primes ¢ < ¢ < ... satistying
¢ =1 (mod p). Denote by @, the set of primes ¢ < ¢ < ... for
which ¢ =1 (mod ¢f") for at least one j but which are not in 0.
Generally, @, denotes the set of primes ¢/ < ¢/ < ... for which ¢® = 1

k—1
(mod ¢§ ") for at least one j but which do not belong to lUQz; in other
=1

words, ¢! = 1 (modq®} for every j and 1< k—1. Put

k 00
@l = IUle, Qoo = ZUQI;
=1

Q" and @, denote the sets of primes which do not belong to O™ and O
respectively. N,(@) denotes the number of elements not exceeding x of
the set ). It follows from the prime number theorem for arithmetic pro-
gressions that

Nao(@1) = (L+0(1)) ——— —

It easily follows from the prime number theorem for arithmetic
progressions and the sieve of Eratosthenes that

Nel@a) = (1o (D) 3.

By using Brun’s method we easily obtain the following stronger
result (e;,e,, ... are positive absolute constants):

(6) N, ((9(2)) < .’)'3/(10;2.1?)1*'1!(""‘ )

The proof of (6) is quite straightforward and can be left to the reader.
I have not proved that N,(@®) tends to infinity as » - oo, but this
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should perhaps be possible by Linnik’s method [1]. In other words, the
problem (P 595) is to prove that there are infinitely many primes » for which

r#1(modp) and r = 1(modq?), i=1,2,...
It is easy to deduce from (6) by using Brun’s method that
(7) V(@) < e /(loga)’.

Very likely there are infinitely many primes in each ¢, and also
in Q.. The problem of the existence of infinitely many primes in Qoo
and @ is connected with the following question. Let p{! = 2 < pV
< ... < p¥ be a finite set of primes. We define inductively a set of primes
as follows. By p{ < p{) < ... we denote the set of primes, for which
p¥'—1 is composed entirely of the p{"’s. Generally, the p{ are the
primes for which p{ —1 is composed entirely of the p{, I < k. Tt seems
likely that for every k& there are primes p{* (perhaps infinitely many),
but nothing is known about this. It is not difficult to deduce from (7)
that the number of the p$), i =1,2,...,k =1,2,..., not exceeding
i8 less than c;x/(logx)? but very likely this is a very poor upper bound.

We can prove that for every & >0 for all but o(z) integers n < z

ae(n) =0 (mod ” p) ‘
’D-((log]og':t:)"’—tz

The same result holds for ¢;(n). Further we can show that if we neg-
lect a sequence of density 0, then

7 ( ?L)

Op_1 (1)

%(1"%1 = (1+o(1))ke"logloglogn

= (14+0(1))
but we do not prove these results in this note.

We will only prove Theorem 1 since the proof of Theorem 2 is similar,
but even in the proof of Theorem 1 we will not always give all the details.
First we discuss to what extent our theorems are the best possible. We
have, for n > 2, @,(n) < n/2; thus in Theorem 1 the number } cannot
be replaced by any greater number. It seems very hard to give an asymp-
totic formula for N (2, a,x) or N (2, ¢, 2) (see (3)) and the second in-
equality of (5) can perhaps be improved (P 596).

Now we discuss (4). It is best possible in the sense that ¢ = 2 cannot
be replaced by any smaller number. We outline the proof. Let y < 2.
If a,(n) < yn, then there clearly is an I so that o(n) s 0(mod 2Y) or »
has fewer than [ prime factors which occur in the factorization of » with
an exponent 1. In other words, » = R, R,, (R,, R,) = 1, where R, is
square free and has fewer than 7 prime factors and all prime factors of R,
occur with an exponent greater than 1. From this remark it follows by
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a simple computation that if y << 2, there is an [ = I(y) such that

x(loglogz) !

(2,7, 8) < 05—
ogr

By the methods used in the proof of Theorem 1 it is easy to show
that for every y >3

£

N_(2 @ Gy ——.
cr( 77}7 )> 410g£1’

We do not give the details of the proof.

If o,(n) < in, then » and o(n) must be odd; hence = is a square
and thus N, (2,2, 2)<2'. In fact, it would be easy to show that
No(2,3, @) = o(@'?) and N,(2,%, x) > ¢;2"*[logw. Tt will not be easy
to obtain an asymptotic formula for N,(2,3, ). Similarly, we could
investigate N,(2, a,2) tor a<3. We only make one final remark. It
is easy to prove that if n, << n, << ... is a sequence of integers for which
as(ng)/n; — 1, then, for every & >0, 21 =o{a).

N;<T

Now we prove Theorem 1. First we prove the first inequality in
(2). We need the following

LEMMA. To every 1 > 0 there is a ¢, > 0 such that the number of primes
p << a for which

: pp—1) 11—y
) -
(8) — %3
is greater than csx/loga.
A simple computation shows that (8) holds if (» odd prime)

9 \1—1— < 7.
(9) r F/fl N
Thus, to prove our lemma it will suffice to show that the number
of primes p < x satisfying (9) is greater than ¢,x/logaz. To see this let
k = k(n) be sufficiently large and let 3 = ¢, < ... << g be the first &
odd primes. Let p, <<...<<p, <« be the set of primes p < & satisfying
k

p = —1 (mod []¢). It follows from the prime number theorem for arith-
i=1

metic progressions that

k
(10) L= (1-+0(1)) lo‘gw | | @—v.

7=1
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Now we prove

(11) Z VA =< = Sl

=1 r]p -1

k
If 7|p;—1, we must have p; = —1 (mod jn ¢;) and p; = 1 (mod 7).
=1

By a theorem of Titchmarsh-Prachar ([3], p. 44, Theorem 4.1) the number
of those primes A (#,x) not exceeding « is less than

T x \—1
(12) B —% log( . ) |
r [](g;—1) ?'?_Q qj

7=1

From (12) and (10) we obtain by a simple calculation (clearly »|p;—1
implies 7 > qx)

1
| Alr,
PRI

=1 7|p;—1 Q<r<z

x ¢ \-! 1

< Cg E 7 (log % ) <?’7117
Q<r<e II Qj_l % ”q:,

j=1 §=1

which proves (11). From (11) we immediately deduce that the number
of primes p; < # which satisfy (9) is greater than /2, which by (10) proves
our lemma.

Let now a< } be given and choose n = 5(a,?) to be sufficiently
small. Let p; < ps< ... be the primes satisfying (8) where p; > c(1,?).
By our lemma we have for y > y(y,1)

1 21
(13) 2 "logy

p<y

Denote by wu, < u,<< ... the integers composed of at most 42
primes p;. From (13) we infer by a simple computation using mductmn
with respect to t that (¢; = ¢;(%))

z(loglog z)!*!
(14) §'1>c.,. gloga) ™
logx

u;<T

From (8) we obtain
1
(15) Po () > o (1—n)'p(w)
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and from p; > ¢(n, 1) we have

(16) (p(’llfi) > Uy (1 — ) .
¢(n,1)
(15) and (16) imply if % is sufficiently small and e(v, t) sufticiently
large that
(17) P (1) > aus.

(14) and (17) prove the first inequality in (2).
Now we prove the second one. Let k = k(a) be sufficiently large
and let ¢, ..., q; be the first k¥ primes. If p,(n) > an, we evidently have

1 1 1 1
(18) Y — < —  hence E —_— .
b D) a q: a
ple(n) Z;l9(n)

Hence by (18) and from the well-known theorem of Mertens (}_,1 [q:
= loglogk+ 0(1)) we have for k = k(a)

1
(19)  ¢(n) £ 0(modgy), jy < ...<j <k, Z(;»—loglogk.
¥i 2

There are clearly fewer than 2° choices for j, < ... < j, < k. Thus
our proof will be complete if we show that for every choice of j, < ..

< jr < k satisfying 5’1 [g;, > ¥loglogk the number of integers n < x
satisfying A=l

(20) p(n) # 0(modg;,), j,<...<j <k,

18 less than

€/2

(log )
logq:
if k = k(e, a) is sufficiently large.

It is easy to see that (20) implies that every prime factor p of =
satisfies p # 1(modg;), j, <...<j, <k. From the prime number the-
orem for arithmetic progressions and the sieve of Eratosthenes using
(19) we easily obtain that the set of primes s, < s, < ... for which s = 1
(mod ¢;,), © =1,...,r, satisfies

(21) Z = (14o0(1 )”(1__) loglog
< exp (_— Si

=1 - 7

) loglogx < %loglngw

if k¥ = k(e) is sufficiently large.
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If n satisfies (20), it must be composed entirely of the s;’s. Hence
if t,< ty< ... are the primes < # which are not s’s, we must have
n % 0(mod #;). From (21) we have

i d £
(22) E ——->(1——)loglogm.
i 1

From (22) we deduce by Brun’s method that the number of these
n < x is less than (if @ > x,(¢))

I—I (1 ! )< v (1
€@ sy
’ i logx 0g®)

tj<w

&[2

which completes the proof of (2).

To complete the proof of Theorem 1 we now have to prove (3).
We will only outline the proof, since it is similar to the proof of the second
part of (2). If gs3(n) > an, we must have D' 1/p < 1/a; hence, as in the

. Plea(m)
previous proof, we must have (as in (19))

pa(n) # 0(modg;,),
(23)

1 1
Jy L ooy L l, Z—-—>——10glogk.
i=1 jS 2

Denote, as in the previous proof, by ¢, < ¢, < ... the primes for which
t = 1(mod ¢;;) for some Jiy t=1,...,7, and by s; < s,<... the set
of primes for which

(24) s 1(modt), j=1,2,...

(23) clearly implies that n is composed entirely of the s;.
From (24) and (22) it follows by Brun’s method that for y > y,(e)

(25) D' (logy)*”.

8 <V
We need the following
LEMMA. Let {s;} be a sequence of primes satisfying (25). Then the
number of integers not exceeding x of the form []sit is less than
Co
(logx)®
We supress the details of the proof.

Since there are fewer than 2° choices for j, < ... < j, < k, our lemma
immediately implies (3) and hence the proof of Theorem 1 is complete.

(logx)™.
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By the same method we can prove that

(26) N¢(4aa’m)<ma

where ¢, is an absolute constant independent of a.
(26) is probably very far from being the best possible.
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