FASC. 2

A UNIVERSAL NULL GRAPH WHOSE DOMAIN HAS POSITIVE MEASURE

 \mathbf{BY}

G. V. COX (SAN BERNARDINO, CALIFORNIA)

1. Introduction. An uncountable set $S \subseteq [0,1]$ such that every subset of S of Lebesgue measure 0 is necessarily countable was first demonstrated by Sierpiński with the aid of the continuum hypothesis (CH) (cf. [6], Proposition 20.1*). It is immediate that $\lambda^*S > 0$, where λ^* denotes outer Lebesgue measure. Such a set S is called a Sierpiński set.

A set $P \subseteq X$ (X separable metric) is said to be a universal null set if and only if every continuous measure (finite, non-negative, countably additive, defined on Borel sets) on X assigns P outer measure 0 if and only if every measure on P is totally atomic (cf. [9] for equivalence). By using CH, Lusin demonstrated an uncountable $P \subseteq [0, 1]$ which, in addition to other properties, is universal null (cf. [6], Proposition 20.1). In fact, it is possible to construct an uncountable universal null set without axioms outside ZFC (see [9] and cf. [4], Theorem 1.2). The main purpose of this note is to describe, using CH, a Sierpiński set $S \subseteq [0, 1]$ and a bijection $p: S \to S$ such that $p = p^{-1}$ and graph (p) is universal null in $[0, 1]^2$. We then show that such a function p does not generally exist for a Sierpiński set $S \subseteq [0, 1]$. The motivation for providing these examples was to answer the questions raised in [3]. The reader should notice that the existence of a universal null graph whose domain has positive measure follows (in ZFC) from Theorem A of [3].

2. The first example. We say that $H \subseteq [0,1]^2$ is symmetric provided that $(x,y) \in H$ implies $(y,x) \in H$. The line in $[0,1]^2$ containing the pairs (0,1) and (1,0) is denoted by L and the line containing (0,0) and (1,1) is denoted by M.

LEMMA. If μ is a measure on $[0,1]^2$, then there exists a symmetric subset H of $[0,1]^2$ such that

- 1. $\mu H = 0$;
- 2. there exists a (relative) dense G_{δ} -subset h of L such that if $p \in h$, then the line in $[0,1]^2$ parallel to M and containing p lies in H.

Proof. For μ on $[0,1]^2$, let μ' be the measure on L, $\mu' = \mu \circ \pi^{-1}$, where π is the projection of $[0,1]^2$ onto L parallel to M. There exists a (relative) dense G_{δ} -set $h \subseteq L$ such that $\mu'h = 0$. Furthermore, we can assume that h is symmetric. Let $H = \pi^{-1}(h)$.

THEOREM (CH). There exist a Sierpiński set $S \subseteq [0, 1]$ and a bijection $p: S \to S$ with $p = p^{-1}$ such that graph(p) is a universal null set in $[0, 1]^2$.

Proof. Index the continuous measures on $[0,1]^2$ by the countable ordinals $\langle \mu_a \rangle$. For each μ_a , let H_a be the set H from the Lemma for $\mu = \mu_a$. Index the G_{δ} -subsets of [0,1] with λ -measure 0 by the countable ordinals $\langle G_a \rangle$.

At the ordinal 0, choose (x_0, y_0) in the set $H_0 \setminus (\pi_x^{-1}(G_0) \cup \pi_y^{-1}(G_0))$, where π_x means the projection onto the x-axis and π_y onto the y-axis. It is possible to choose (x_0, y_0) since $\lambda G_0 = 0$ and H_0 contains a line parallel to M. Furthermore, (y_0, x_0) is also in the set since H_0 is symmetric, $x_0 \notin G_0$ and $y_0 \notin G_0$.

At the ordinal β , choose (x_{β}, y_{β}) in the set

$$\left[\bigcap_{a\leqslant\beta}H_a\right]\smallsetminus\left[\pi_x^{-1}\left(\bigcup_{a\leqslant\beta}G_a\cup\bigcup_{a<\beta}\left\{x_a,\,y_a\right\}\right)\cup\pi_y^{-1}\left(\bigcup_{a\leqslant\beta}G_a\cup\bigcup_{a<\beta}\left\{x_a,\,y_a\right\}\right)\right].$$

This is possible since $\lambda \left(\bigcup_{\alpha \leqslant \beta} G_{\alpha} \cup \bigcup_{\alpha < \beta} \{x_{\alpha}, y_{\alpha}\} \right) = 0$ and $\bigcap_{\alpha \leqslant \beta} H_{\alpha}$ contains a line parallel to M. Furthermore, (y_{β}, x_{β}) is also in the set. Letting

$$S = \bigcup_{eta < \omega_1} \{x_{eta}, y_{eta}\},$$

S is clearly an uncountable subset of [0,1]. However, if $B \subseteq S$ and $\lambda B = 0$, then $B \subseteq G_{\beta}$ for some β , so

$$B \subseteq \bigcup_{a<\beta} \{x_a, y_a\},\,$$

which makes B countable. Define $p: S \to S$ by $p(x_{\beta}) = y_{\beta}$ and $p(y_{\beta}) = x_{\beta}$ for each β . Then p is 1-1, onto, and $p = p^{-1}$. Furthermore, for each μ_{β} on $[0, 1]^2$, only countably many points of graph(p) fail to lie in H_{β} , so $\mu_{\beta}^*(\operatorname{graph}(p)) = 0$. Therefore, graph(p) is universal null.

3. Another property of the first example. A set $P \subseteq X$ (X separable metric) has strong measure 0 means that if $\langle d_1, d_2, \ldots \rangle$ is any sequence of positive numbers, then there exists a sequence $\langle p_1, p_2, \ldots \rangle$ of points in P such that the collection of neighborhoods $\{N_{d_1}(p_1), N_{d_2}(p_2), \ldots\}$ covers P. In many parts of the literature, strong measure 0 is called property C, and universal null is called property β (see, e.g., [5]).

It is well known that C implies β (cf. [4], Theorem 1.3). It is also known that β does not imply C. This result is found in [5] by producing a β -set not having dimension 0, and showing that C-sets have dimension 0.

The result can also be deduced from [7] where a set is described having a property stronger than β whose square does not have property C. Since squares of β -sets are β , the conclusion follows. As mentioned in [4], p. 154-155, Sierpiński [8] constructed a β -set in [0, 1] and a continuous function $f: [0,1] \to [0,1]$ (also of bounded variation [1]) such that $f(\beta)$ is not β . As such a function f preserves property C, the conclusion follows. We obtain yet another example, since the graph of p is β , but is not C, else S would be C, and therefore $\lambda(S) = 0$. Each of these examples assume CH.

Laver [4] showed that it is consistent with ZFC that property C is the same as countable. When coupled with the ZFC example of an uncountable β -set one obtains a β -set with which it is consistent that it is not C.

On the other hand, it follows from [2] that β does not imply C (in ZFC). That is, Grzegorek proved ([2], Corollary 2) that there exist subsets A and B of [0, 1] with |A| = |B| and such that A is β and B is not β . Let f be a bijection from A onto B. The graph of f is β (since A is β) but not C (since B is not C). See also Corollary 3 of [3].

4. The second example.

THEOREM (CH). There exists a Sierpiński set $S \subseteq [0, 1]$ such that if $p: S \to S$ is a function, then graph(p) is not universal null.

Proof. Let λ^2 denote Lebesgue measure on $[0,1]^2$. For $H \subseteq [0,1]^2$ and $M \subseteq [0,1]$, we have

$$H^M = \{y : \text{ there exists } x \in M \text{ such that } (x, y) \in H\}.$$

Index the G_{δ} -subsets of [0,1] with λ -measure 0, as before, by $\langle G_{\alpha} \rangle$. Index by $\langle H_{\alpha} \rangle$, $\alpha < \omega_1$, the Borel sets H in $[0,1]^2$ with $\lambda^2 H = 0$ and with the additional property that $\lambda(H^{\{x\}}) = 0$ for all $x \in [0,1]$.

Choose $x_0 \in [0, 1]$. At the level β , let

$$M = \bigcup_{\alpha < \beta} \{x_{\alpha}\},$$

and choose x_{β} from the set $[0,1]\setminus (\bigcup_{\alpha<\beta}G_{\alpha}\cup\bigcup_{\alpha<\beta}H^{M}\cup M)$. Letting

$$S = \bigcup_{\beta < \omega_1} \{x_{\beta}\},\,$$

S is clearly a Sierpiński set.

Now suppose that $p: S \to S$ is a function and let p^{-1} denote the inverse, although it need not be a function.

We claim that one of the following conditions is satisfied:

(1) p is essentially the identity function, hence graph (p) is essentially like S, and thus not universal null;

- (2) an uncountable subset T of S is mapped to the same point, thus since $\lambda^*T > 0$, graph(p) is not universal null;
 - (3) $\lambda^{2^*}(\operatorname{graph}(p)) > 0$.

Supposing that none of the three conditions is met, there exists a Borel set $B \subseteq [0,1]^2$ such that B contains $\operatorname{graph}(p) \cup \operatorname{graph}(p^{-1})$ and $\lambda^2 B = 0$ (since (3) fails). By Fubini's theorem (cf. [6], Theorem 14.2), there exists a Borel set $C \subseteq [0,1]$ such that $\lambda C = 0$ and if $x \in [0,1] \setminus C$, then $\lambda(B^{\{x\}}) = 0$. Now $B \setminus \pi_x^{-1}(C)$ is a Borel set in $[0,1]^2$, and since $C \cap S$ must be countable, this Borel set contains all but countably many points of $\operatorname{graph}(p)$, and since (2) fails, it must contain all but countably many points of $\operatorname{graph}(p^{-1})$. Therefore, there exists α such that H_α contains $\operatorname{graph}(p) \cup \operatorname{graph}(p^{-1})$. Since (1) and (2) fail, either $\operatorname{graph}(p)$ or $\operatorname{graph}(p^{-1})$ contains a pair (x_β, x_γ) with $\alpha < \beta < \gamma$. This violates the condition that $x_\gamma \notin H_\alpha^M$, where M includes x_β . Thus the theorem is proved.

COROLLARY (CH). There exists a countably generated, point separating σ -field \mathbf{B} on a set S such that if p is a bijection from S onto S, then there exists a continuous probability measure on $\sigma(\mathbf{B} \cup p(\mathbf{B}))$.

Proof. Combine the above example with the proof of Theorem A in [3].

Acknowledgement. The author wishes to express his appreciation to Edward Grzegorek for the interest shown in this work and for valuable suggestions for improvements.

REFERENCES

- [1] R. B. Darst, A universal null set which is not concentrated, Fundamenta Mathematicae 62 (1968), p. 47-48.
- [2] E. Grzegorek, Solution of a problem of Banach on σ-fields without continuous measures, Bulletin de l'Académie Polonaise des Sciences, Série des sciences mathématiques, astronomiques et physiques (to appear).
- [3] and C. Ryll-Nardzewski, On universal null sets, submitted to Proceedings of the American Mathematical Society.
- [4] R. Laver, On the consistency of Borel's conjecture, Acta Mathematica 137 (1976), p. 151-169.
- [5] S. Mazurkiewicz and E. Szpilrajn, Sur la dimension de certains ensembles singuliers, Fundamenta Mathematicae 28 (1937), p. 305-308.
- [6] J. C. Oxtoby, Measure and category, New York-Heidelberg-Berlin 1971.
- [7] W. Sierpiński, Sur le produit combinatoire de deux ensembles jouissant de la propriété C, Fundamenta Mathematicae 24 (1935), p. 48-50.
- [8] Remarque sur le problème de l'invariance topologique de la propriété C, ibidem 29 (1937), p. 91-96.
- [9] et E. Szpilrajn, Remarque sur le problème de la mesure, ibidem 26 (1936), p. 256-261.

Reçu par la Rédaction le 5.5.1979; en version modifiée le 2.10.1979