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MEASURE PRESERVING ANALYTIC DIFFEOMORPHISMS
OF COUNTABLE DENSE SETS IN C" AND R"

BY

MICHAL MORAYNE (WROCLAW)

0. The classical Cantor theorem characterizing type n can be
reformulated in the following way: for two arbitrary countable and dense
subsets of R there exists a-homeomorphism of R onto R establishing a 1-1
correspondence between them. L. E. J. Brouwer showed ([2], see also [3], p.
360, Problem 4.5.2) that, in the above theorem, R can be replaced by R".
From the theorem of R. B. Bennett ([1], th. 3) it follows that R" can be
replaced by any manifold. In [4] P. Franklin proved that the
homeomorphism in Cantor’s theorem (on R) can be chosen to be an analytic
function.

In this paper we show that for two arbitrary countable and dense
subsets of C" or of R" for n> 2, where R" is considered as a natural
subspace of C", there exists an analytic diffeomorphism of C" onto C”
establishing a 1-1 correspondence between these two sets. Additionally, the
Jacobian of this diffeomorphism can be identically equal to one.

I wish to thank Professor Czestaw Ryll-Nardzewski for taking interest in
the problems treated here and for advice and suggestions.

1. By B(z, r) we will denote the closed ball in-C" (with the Euclidean
metric) of center ze C" and radius r > 0. For z =(zy, z,, ..., z,)e C" let us
define S(z) =) z?. By id we will denote the identity function in C". Let us
put 6 =(0,0,...,0eC" (R". Let K: C"— C". By DK (z) we will denote the
Jacobi matrix of K at a point z. For the complex nxn matrices [z;;] we
define the norm: ||[z;]]ll =Y. Izl

ij

THEOREM 1. For two arbitrary sets A, B countable and dense in C", n > 2,
there exists an analytic diffeomorphism F of C" onto C" such that F(A) =B
and detDF (z) = 1.

Before we start the proof of Theorem 1 we will prove a few auxiliary
lemmas.
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Let P be a two-dimensional plane in R". Let S, denote the perpendicular
projection (in R") onto P. Let o}, denote the rotation on the plane P with
center ye P and angle ¢. We extend o], to the rotation Of, in the whole
space R"™

0},(x) =0f ,(Sp(x))+(x—Sp(x)) for xeR"

LEMMA 1. Let 0 <@ <2n and 6 > 0. There exists £ > 0 such that for
s, te R", where te B(s, &), on any plane P containing the points s, t there lies
a point y such that O} ,(s) =t and yeB(s, 9).

Proof. It is enough to put ¢ < 2dsin(¢/2).

Later on we will use the fact that each rotation in R" with center 0
can be expressed in the form exp(B), where B is a certain antisymmetric
matrix, and conversely that each mapping of this form is a rotation in R"
with center 6.

Let L= {z',z%,...,z"} = C" aeC, B be a real antisymmetric nxn
matrix. Let for zeC"

W.(z) = H (Sz)—-S(2)

and
(1) H(z) = Hy , 5(2) = exp(aW.(2) B)(2).

It can be easily noticed that for z!, z2, ..., z"eR" and aeR the function
H acts as a rotation with center 6 on each sphere {xeR": |x| =r} and that
det DH(x) = 1 for each xeR" H is an analytic function of varlable zeC",
and therefore we have det DH(z) = 1 for each ze C", where z!, 22, ..., z"eR"
and aeR.

If z is fixed, then detDH(z) =f(z},...,z}, ..., 2%, ..., 2" &) is an
analytic function of variables zi,...,z}, ..., 2z7, ..., z" aeC, and therefore
the condition det DH(z) = 1 holds for each zeC" and for arbitrarily given L
={z!,2%,...,2"} = C" and aeC.

Let z!, z2, ..., z"eR", aeR. It can be easily noticed that

WL (HL.G,B (X)) = WL (X) fOl‘ eaCh xX€e R'I .
Hence
Wi(Hpe.p(z) = Wp(z) for each zeC",

whence, using the same argumentation as above, we obtain
W;.(HL.a.n (z)) = WL(2)

for each ze C" and for arbitrarily given L = {z!, z2, ..., z"} c C" and «€eC.
One can easily see now that H; , g(Hy _, B(z)) =z for each ze C". Thus we
obtain the following lemma.
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LEMMA 2. Each function H,,p given by formula (1) is an analytic
diffeomorphism of C" onto C" and detHp,g(z) = 1.

LEMMA 3. Let f: C"— C" be a continuous function. Let the inequality
|f(z)—z| <1 hold for each ze B(0, N+1). Then

B0, N) =f(B(8, N+1)).

Proof. Let ye B(8, N). Let us consider the function g(z) = y—(f(2)—2z).
We have g(B(f, N+1)) = B(6, N+1), and therefore from Brouwer’s fixed
point theorem it follows that there exists a point ze B(6, N +1) such that
z=g()=y—f(2)+z. Thus y =f(2).

Lemma 4. Let J=/{c',c? ...,c"} =C" and seC"\J, ¢>0, N>0.
Let D be a dense subset of C". Then there exists a diffeomorphism
G =(G,, Gy, ..., G,) of C" onto C" such that: (i) G(s) =d for some deD;
(i) G(c)=¢,i=1,2,...,m; (ii) G;: C"— C is an analytic function, i = 1,
2,...,n; (iv) det DG (z) = 1; (v) |IDG(2)=1|| <&, |G(z)—z| <&, ||IDG™ ' (2)—-1]|
<eand |G (z2)—z| <& for each ze G (0, N), where I denotes the n x n identity
matrix.

Proof. One can easily see that there exists a unitary transformation
V: C"— C" such that min {|S(V(c'—s))|:i =1, 2, ..., m} = n > 0. For a unitary
transformation U by Gy we will denote the mapping Gy(z) = U(V(z—3)).

Let { > 0 be so small that if ||B|| < {, where B is a real antisymmetric
matrix, then for each mapping

(2) K(z) = Gy'! (H La8(Gu(@)—y)+ )’),

where U is a unitary transformation, ye B(6, 1), |a| < (4/n)", L= {Gy(c)
—y:i=1,2,..., m}, the inequalities
IK(z)—z| <&, |IDK(z)—1I||<¢e

hold for each ze B(0, N).

It follows from Lemma 2 that det K(z) =1 for each K defined by (2).

Let 2n > ¢ > 0 be so small that for each two-dimensional plane P < R",
€ P, there exists an antisymmetric matrix B} such that exp(B}) = O}, and
IBl| < ¢.

Let 0 <d <1 be so small that the inequalities

min {|S(V(d—9)—z): i=1,2,...,m} >n/2, |[S(@z)| <n/4

hold for each zeB(8, J).

We choose ¢ for 6 and ¢ in accordance with Lemma 1. We can take
a point de B(s, ) n D and a unitary transformation U such that G,(d)eR"
and the inequality min {|S(Gy(c')—z): i=1, 2, ..., m} > n/2 holds for each
zeB(0, 9). By Lemma 1 there exists ye B(6, 5) »R" such that Of,(—y)
= Gy(d)—y, where P is the two-dimensional plane containing the points
0, Gy(d)—y, —y. There exists a real antisymmetric matrix B, such that
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04, =exp(B}) and ||Bfl| <{. We put G(z) =K(z) for K given by (2),
where y and U are as above and L= |Gy(d)—y: i=1,2,...,m},
a=1/W,(—y), B=B}. Then G(s) =d. We have —yeB(f, ), whence
S(—=y) <n/4. Thus | <(4/n)™. One can easily see now that G has the
desired properties.

Proof of Theorem 1.

Construction of F. Let A= {a,, a,,...} and B = {b,, b,,...}. We will
construct a sequence of diffeomorphisms G': C"—-C", i=0, 1, 2, ..., such
that the functions F' = G'oG'"'o0...0G°® converge almost uniformly to
a function F satisfying the required conditions.

Let G°=id. Let ro =1 and r; > 1.

Let ¢ > 0. Suppose we have already constructed diffeomorphisms G°,
G!,...,G* such that for F*=G%0G% '0...0G° we have F%(q)
=b,eB, F¥(a,)=b;, a,€A4, i=1,2,...,j, and det DF*(z) =1. Let us

assume that for k =0, 1, ..., 2j we have

IG¥0G* 'o...0G*"(z)—z] <o and ||D(G¥0oG¥ 10...0G"(2)-1I|| <o
for each ze B(0, r,), where

G*0G* '0...0G°(B(6, k+1)) = B(O, r+y)
and

G*0G¥ '0...0G*(B(6, r,)) = B(B, r3j+1)-
Let us also assume that r;, >i, i=0,1,..., 2j+1.

Construction of G**!. If F*(a;,,)e B, we put G¥*' =id and we write
in(aj+ 1) = bvj...l'

Let us assume that F?*/(a;,,)¢ B. Let ¢ >0 be so small that for each
diffeomorphism G satisfying the inequalities (v) of Lemma 4 for N =r,;,,,
the inequalities

IGoG*0G* 'o...0G*(2)—-z| <o
and

ID(GoG¥0G¥ 'o0...0G(2)-1I|| <@
hold for eachze B(6, r,), k =0, 1, ..., 2j. We assume that ¢ < min (o, 1/23/*1).
Let J = {by, bs, ..., bj, byy, buys s by} s = F¥(aj ), D = BN =13y, Let

G be chosen for J, s, &, N, D in accordance with Lemma 4. Let us put
G(s) =b,,,,. We put G¥*!' =G and F¥*' = G¥*10G¥0... 0G".

From the properties of G¥*! and of G° G!, ..., G¥ it follows that
|IG¥*'0G¥*0o...0G*(2)—z| <o

and
ID(G¥*'oG¥o0...0GY(z)-1I|| <@
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for each zeB(0,r), k=0,1,...,2+1. Also F¥*'(a)=b,, i=1,2,...,
j+1, FFi*Y(a,)=b;, i=1,2,...,j, and det DF¥*! = 1.
Construction of G¥*2. If b;,,e F¥*'(A), we put G¥*2 =id and we

Write a'j+l = (sz+ l)_ 1 (bj+ 1).

Let us assume that b;,, ¢ F>*!(A). Let ry;., > 2j+2 be so large that
'szn 0G¥o...0G*(B(#, r)) =B(0,ry.2), k=0,1,...,2+1,
and
G¥*10G¥o...0GO(B(B, 2j+2) < BB, ry).2).

Let ¢ < min(o, 1/2%*2) be so small that for each diffeomorphism G satisfying
the inequalities (v) of Lemma 4 for N =r,;,, the inequalities
|IGoG**'oG¥0o...0G"(z)—2| <0
and
ID(GoG¥* ' 0G¥0o ... 0GY(2)~1|| <&

hold for each zeB(0,r,), k=0, 1,...,2j+1. Let

J = ‘:bl, b2’ ooy b‘,, bvl’ bvz, ceey b"j+l}’ s = bj+l’ D = F‘(21+1)(A), N =r21+2.
Let G be chosen for J, s, ¢, N, D in accordance with Lemma 4. Let
d =F2f“(a,,j ). We put

+1

G3*2 =G~!, F¥*1=GU*25G*1o ... 0 GO,

Let us also take ry;.3 > 2j+3 so large that
G¥*20G¥*'0...0G*(B(O, ) = B0, ry.3), k=0,1,...,2+2,

and

G**20G¥*10...0G°(B(0, 2j+3)) = B(0, r3j+3).

It follows from the construction that the sequence {F*}2, is almost

uniformly convergent and for F = lim F* we have F(A)=B. By the
k—o
‘Weierstrass theorem F: C"— C" is an analytic function and det DF(z) = 1.
It remains to show that F is a diffeomorphism of C" onto C". Let us take o
< 1/4". Let us put
& = lim GGoG 'o...0G, k=0,1,2,...
j—o

By the Weierstrass theorem we obtain from the construction of F the
inequality

\DP*(z)-1|| < 1/4* for each zeB(@®,r), k=0,1,2, ...
Let us put C"= R*" by taking (z,, ..., z,) = (Rez,, Imz,, ...,Rez,, Imz,).

7 — Colloquium Mathematicum 52.1
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Using the Lagrange mean value theorem for R2" one can easily check that

1
Iy(z)—ﬂ(}’)l>4712-}’| for z, yEB(os rk)s k=09 19 2’-"9

whence @* is injective on B(0, r,). Hence F is injective on B(0, k) because
G*'0G*"%0...0G°(B(#, k)) = B(#,r) and because the functions G’
are diffeomorphisms of C” onto C". Thus F is injective on C".

We have F(C")=&*(C") > ®*(B©,r)), k=0,1,2,... From the
construction of F it follows that |#*(z)—z| <o for each zeB(,r,), k
=0,1,2,..., whence by Lemma 3

B, r,—1) = &*(B(0, 1))

Hence B(0, k—1) < F(C". Thus F(C") = C". This completes the proof of
Theorem 1.

If we restrict our considerations to R" regarded as a natural subspace
of C", by the same methods as above we are able to prove the following
theorem.

THEOREM 2. For two arbitrary sets A, B countable and dense in R", n > 2,
there exists an analytic diffeomorphism F of C" onto C" such that F(A) =B
and det DF (z) = 1.

Remark 1. If we put as above C" = R?", then the condition det DF (z)
= 1 of Theorems 1 and 2 implies that F preserves the Lebesgue measure in
R?*". Additionally, in Theorem 2 F preserves the Lebesgue measure in
R"c C".

Remark 2. Theorems 1 and 2 do not hold in the one-dimensional case
because only the non-constant linear functions are analytic diffeomorphisms
of C onto C.
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