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A CHARACTERIZATION
OF FINITELY IRREDUCIBLE CONTINUA

BY

[T. MACKOWIAK| (WROCLAW)

It is proved that a metric continuum X is irreducible about a finite set if
and only if X is not the union of a countable monotonic collection of proper
subcontinua. This equivalence is a solution of Fugate’s question posed in the
University of Houston Mathematics Problem Book (Problem 113).

All considered spaces are metric continua. Denote the collection of all
nonempty subcontinua of X by C(X). Put

Co(X) = {KeC(X): K # X},
SX)={AcX: if AcKeC(X), then K = X},
I1(X) = {A = X: there exists aeX such that 4 u {a}eS(X)).

By a slight modification of the proof of Théoréme XIX in [3], p. 270 (cf.
[4], Theorem 4, p. 192), it has been proved in [5], Theorem 3, p. 336, that

(1) A¢I(X) if and only if there are P, ReCy(X) such that
X=PUR and AcPnR.

If {a, b} €S(X), then the continuum X is called irreducible (between a
and b). If there is a finite set in X belonging to S(X), then X is called finitely
irreducible (or irreducible about a finite set). If K is a minimal subcontinuum
of X intersecting both A and B, where A and B are closed, nonempty and
disjoint subsets of X, then we say that K is irreducible between A and B. The
following is known (see [4], Theorems 2 and 5, p. 220):

(2) If K is a subcontinuum of X which is irreducible between A and B,
then the set K\(A UB) is connected and dense in K and \a, b} €eS(K) for
acAnK and beB K.

We have

(3) If 'K, L,M! € Co(X), KULeS(X), MNK # @ # ML, then the
set X\(K U L) is connected and contained in M.
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We can assume that KNL=(. Let N be an irreducible continuum
between K and L in M. Then X = KU N U L because K u LeS(X). More-
over, the set

X\(KuL)y=N\(Kul)

is connected by (2), i.e,, (3) holds.
(4) If B is a subset of X, A,€Cy(X), A,uBeS(X), A,y € A, for n
=1,2,..., and

then AU BeS(X).

In fact, if K is a subcontinuum of X containing AU B, then X =K U A,
for n=1,2,... because KuA4,eC(X) and A,uBeS(X) for n=1, 2, ...
Hence K=Kud=X.

For A c X let

I1(A, X) = {BeCy(X): AuBeS(X)}
and

I,(A, X) = {Bel(A, X): if CeCy(B), then C¢I(4, X)}.

By Brouwer’s reduction theorem and (4) we obtain

(5) If I(A, X) # @, then I,(A, X) # Q.

A continuum X is called a @-continuum provided for each K € Cy(X) the
set X \K has finitely many components. By an easy induction we obtain (see
[6], (2.5), cf. [1], Theorem 3.4)

(6) If X is a O-continuum and {K,, K,, ..., K,} = Co(X), then the set
X\(K;uK,u...uUK,) has a finite number of components.

We have

MDIf X is a O-continuum, N, M, ReCy(X), aeMc X\N, X
=NURUM and R is irreducible between N and {a}, then
X \(M U N) contains exactly one component C such that

cl(C)nN?éQ) #cl(C)n M.

Moreover, the set clC is an irreducible continuum between M and N.

According to (6) the set X \(M u N) has a finite number of components.
Therefore, the component C of X \(M u N) such that

d(C)AN#@ £c(C)n M

is open. The set cl C-is a subcontinuum of R containing a point from N nR.
Therefore, the set R\clC is connected by (2) and Theorem 3 in [4], p. 193.
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Since
aecl(R\clC) =« R\C
(C is open in R), we conclude that cl(R\clC) "N = Q. But

X\(MUNUC) cR\cIC < X\N.

Therefore, no component of X\(M u N) different from C intersects N. The
set C is open and connected and C c R, so

clC = cl(int(c1 ),

i.e, clC is a closed connected domain in R. Hence cl C is irreducible between
every point of NnclC and every point of the boundary of cIC in R by
Theorem 1 in [4], p. 195, so (7) holds.

We write X € # provided that X is a continuum which is not the union
of a countable monotonic collection of proper subcontinua. Observe first that

8) If a continuum X is finitely irreducible, then X € #.

Suppose X is irreducible about the set {a,, a,, ..., a,} and

. )
X= U Kl"
i=1

where K; < K., and K;e€Co(X) for i=1,2,... Then {ay, a,, ..., a,} < K;
for some j. Thus K; = X, because {a,, a,, ..., a,} €S(X): a contradiction.

9 If Xe#, then X is a O-continuum.

Let KeCy(X) and suppose that the set X\K has infinitely many
components. The induction gives us the sets A; for i =0,1and j=1, 2, ...
such that

X\K =404}, A)=40,,04}.,,

the sets A] and Aj are nonempty and separated and A contains infinitely
many components of X\K for j=1,2,... The sets KU A} are continua.
Since

KUA),, cKu4j,

the set

[- o}
K=Ku A
j=1
is a continuum. Therefore, the sets
k
Rh = K'U U Ajl

j=1
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are continua. Since
Ry Ry, X=U R, and ReCo(X),
k=1

we infer that X ¢ #, a contradiction.

(10) If U is an open and connected subset of X € #, then clU € #.
The set X\clU has a linite number of components C,, ..., C, by (9).

Suppose

9
C|U= U K.‘,
i=1

where K; c K;,, and K;eCy(clU) for i =1, 2, ... Since
cdCircdlU#@ fori=1,...,n,
we can assume that K, ~clC; # @ for i = 1,..., n. Put

Rj=K,,juclCyu...uclC, forj=1,2,..

The sets R; are continua, R;,, o R; and
a
i=1

Since X € #, we infer that R; = X for some j. Since
Un(lC,u...uclC) =0,

we obtain U cK,,;; thus clU=K,,;; a contradiction, because
Kpij€Col(clU).
(11) If Xe.#7, Aely(B, X), then A€ 7.
Suppose
A= U Ki#
i=1

where K; © K;,, and K;€Cy(A) for i =1, 2, ... Since the set X\ A4 has a
finite number of components (cf. (9)), we can assume that K, intersects the
closure of every component of X\ A. Therefore, the sets cl(X\A)u K, are
continua,

c(X\A)uK; ccl(X\A)uUK,;,,
and

X= Cj (cl(X\4) UK)).

Since X € #, we infer that cl(X\A) U K; = X for some j. If L is a continuum
containing the set K; U B, then LU A = X, because 4 U B eS(X). Therefore,
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cl(X\A) = L. Thus L=LuUK; =X, ie, K;el(B, X). But K; = Aely(B, X)
implies A = K;, a contradiction because K;€Cq(4).

(12) If Xe.#Z, KeCy(X) and for each PeCy(X) with K c P we have
K ncl(X\P) # @, then there is L such thai

K c Lel(X) nCy(X).
By induction and (1) we construct P;, R; eCy(X) such that
X=P. R, K PRy, R PR

and the set P;\R, is connected for i =1, 2, ... In fact, if K¢1(X), by (1), we
find P,, R, €Co(X) with X = P, UR, and K < P; nR,. According to (9) we
may assume that P,\R,; is connected (we add all components of P;\R,
except one to R,). In the same manner we find P;,, and R;,, if P; and R;
are defined and R;¢I(X). Since

P,y \Ri4+;, € P\ R,
and the sets P;\R; are connected, we find that the set P, de!ned by

Po= () cl(P\R)

is connected. Moreover, PonK #@ (otherwise, cl(P;\R)NK
=cl(X\R;) nK = @ for some i, a contradiction). Therefore, the sets P, U R;
are continua. Since

X=POUURi and PoUR,-CP0UR‘+1
i=1

fori=1, 2, ..., we infer that P, U R; = X for some i by assumption. Hence
cl(Pi+1\Ri+1)UR; = P,UR;;
thus P;\R; ccl(P;+;\Ri+,) € P;+,. But R; < P;,, thereby

X =P, UR; =Py,
a contradiction.

(13) If Ael(X)NnCy(X) and for each ReCy(X) with A = R we have
ANcl(X\R) # @, then cl(X\A) is an indecomposable continuum.

In fact, suppose that
cl(X\A) =PUR, where P, R cCy(cl(X\A4))

(the set cl(X \ 4) is a continuum by (3)). According to (3) we can assume that
PrA=Q and RnA# @. Then AUReCy(X) and

Ancl(X\(AUR)cAnP=0,

a contradiction.
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A subcontinuum K of X is called terminal if every subcontinuum of X
which intersects K and X\K contains K. A continuum X is colocally
connected at K if for every open neighbourhood U of K in X there exists an
open set V such that K cV < U and the set X\V is connected. The
following is known (see [2] for the proof; cf. [6], (5.1)):

(14) If K €Cy(X) and for each LeC,(X) with K = L there is M €Cy(X)
such that L cint M, then there is a terminal subcontinuum N of X such that
KNnN =@ and X is colocally connected at N.

We have

(15) If Xe% and X is colocally connected at N €C,(X), then there is
MeCy(X\N) such that Nu M eS(X).

Fix ae X\ N and let R be an irreducible continuum between N and {a}.
Let ¥, be open sets such that aeX\¥, X\V, is connected, V;,, <V, for i
=1,2,... and

- o]
N= (V.
i=1

The sets NURuU(X\V) are continua,
NURU(X\V)cNURU(X\V,,) fori=1,2,...
and
X=NuURuU | (X\V).
j=1
Since X e#, we infer that X = NURuU(X\V)) for some j. Let C; be a
component of V;\ N such that
NnclC; # @ #(X\V) nclC;.
By (7) and (9), the set
M =(X\V)u(\(NuC))

is a continuum, M < X'\ N and clC; is irreducible between N and M; hence
Nu MeS(X).
(16) If Xe#, KeCy(X), then there is N such that

K = Nel(X) A Co(X).

In fact, according to (12) we can assume that for each LeC,(X) with
K c L there is M €Cy(X) such that L cint M. By (14) there is a terminal
continuum P in X such that K nP = @ and X is colocally connected at P.
It follows from (15) that there is NeC,(X\P) such that PU N eS(X) and
K < N. Since P is terminal, we infer that {a} U N €S(X) for each a€P, ie,

Nel(X).



FINITELY IRREDUCIBLE CONTINUA 7

(17) If Xe#, A is an indecomposable subcontinuum of X with the
nonempty interior, LeCy(X) and L intersects every composant of A, then
AclL.

Let C,, C,, ..., C, be components of X\ A (cf. (9)). Let K; be a proper
subcontinuum of A intersecting simultaneously clC; and L. The set
(int A)\(K; v...uK,) is open and dense in A. We can assume that
a e(int A)\ N, where

N=clCiu...uclC,uK;u...UK,UL.
Let M, M,, ... be a sequence of subcontinua of A such that aeM,,
M,nL#@®, M;cM,,, and G M; is a composant of 4. Let K(a, 1/m)
denote a ball around a with r:Jius 1/m. We can assume that
K@, 1/mnN=0@ form=1,2,...

Denote the component of X\K(a, 1/m) containing N by N,. The sets
N,,u M,, are continua,

NMUM".CNM.,.IUM"H.I for m=l,2,...

and

o
X= | (NyuM,).
m=1
Since X €.#, we infer that X = N, u M, for some positive integer k. Then
K (a, 1/k) =« M,, but M, is a proper subcontinuum of 4 which is indecom-
posable, a contradiction.
(18) If Xe#, A is an indecomposable subcontinuum of X with the
nonempty interior, then A contains.a composant C such that C cint A.

It suffices to show, by (9), that if K is a component of X\A, then
N =J{C: C is a composant of 4 and C nclK # @}

is of the first category. According to (17) there is a composant C, of 4 such
that ConclK = @. Fix aeC, and let K(a, 1/m) be a ball around a with
radius 1/m. Take

B, = {L L is a component of 4\K(a, 1/m) and LnclK # Q}.

The set B,, is closed in 4 and B,, n C, = @. Therefore, B,, is nowhere dense
in A. But

so N is of the first category in A.
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(19) If Xe% and A is an indecomposable subcontinuum of X with the
nonempty interior, then there is a point a€A such that A < L provided

aeLeC(X) and Ln(X\intA)# Q.

In fact, let C be a composant of A such that C cintA4 and aeC (cf.
(18)). If K is a subcontinuum of L irreducible between a and X \int 4, then
the set K nintA is connected and dense in K by (2). Thereby K < 4. If
A # K, then K = C, and therefore K n(X \int 4) = @, a contradiction. This
implies A =K < L.

(20) If K is an irreducible continuum in X and U is an open connected
subset of X such that U - K, then clU is an irreducible continuum.

Indeed, let {a, b} eS(K). The set clU is a closed connected domain in
K. If {a, b} ~clU # @, then the continuum cl U is irreducible by Thcorem |
in [4], p. 195. Assume 'a, b} nclU = Q. According to Theorem 3 in [4], p.
193, the set K\clU is the union of two open connected sets VV and W in K,
one of which contains a and the other contains b. Let aeV; then VuclU is
a closed connected domain in K containing a. By Theorem 1 in [4], p. 195,
the continuum VuclU is irreducible between a and some point ce(clU)\ V.
The set clU is a closed connected domain in V clU containing ¢. There-
fore, once again by Theorem 1 in [4], p. 195, the continuum cl U is irreducible.

(21) If U is an open connected subset of X € % and clU is an irreducible
continuum, then there is a finite set A < X such that U c M provided
A c MeC(X).

Let C,, ..., C,, be the closures of components of X' \clU (cf. (9)) and let
K =clU, {a,-b}eS(K). It follows from Theorems 2 and 4 in [4], pp. 195
196, that if & is the family of all closed connected domains containing the
point a (in K) and besides @ € %), then 2 can be indexed by the elements of
a closed set J « [0, 1] in such a manner that

(s <1)<>(D; cintyD,) and @ # D, # K for teJ\ 0, 1!.
Put E(D) =cl(K\D) and & ={E(D): De2}. By Theorem 5 in [4], p. 196,
the collection & is the family of all closed connected domains in K contain-

ing the point b augmented by the empty set and E(E(D)) =D for De2 U &.
It follows from Theorem 6 in [4], p. 197, that

bdk (D)) = bdg(E) = D, N E,.

Therefore, since U is open, dense and connected in K, we infer that
(21.1) D,NE,nU # @ for teJ\'0,1].
Fix i=1,2,...,m and put

to =inf{reJ: D,NC; # @}
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and
ty =supiteJ: E,nC; # Q}.
Consider three cases.

(@) ¥, < t}). Then there is no teJ such that | <t <t (otherwise,
(D,UE)NC; =@, but C;~clU # @ and clU; =D, UE,, a contradiction).
Put T, =[r,, t5]. According to Theorem 2 in [4], p. 215, the set K;
=cl (D,.;) \D,.-l) is an indecomposable continuum. Moreover, it has the nonempty

interior in X by (21.1). Hence, by (19), there is a point a’ € K; such that K; = I
provided
adeleC(X) and L-(X\K) 7 Q.
Put A4; ={a'}.
(b) to =¢,. Then we put T, = {t)!, A, = Q.
(c) th <. Put T, = [t}, £}]. The set T, ~J is finite. In fact, suppose, on
the contrary, that T; ~J is infinite. According to the symmetric properties of

7 and & in K, we may assume that there are t, €J such that 1y, <t, <14,
<t for k=1,2,... Let

P=D; uCiu NE,.
0 k=1

Then P is a continuum. Write
P,=D,uPUU{C;: C;n(PUD,)#@} for k=1,2,...

Since P, is a countable monotonic collection of proper (by (21.1))
subcontinua of X and

[o o]
X = U Pk’
k=1
we obtain a contradiction, because X € #.
Since T, nJ is finite, we find t,, ..., t,€J such that
th=t; <t <..<t,=t

and D, .. and D, form a jump in . Therefore, by Theorem 2 in [4], p. 215,
k+1 k

the sets cl(D,,,\D,) are indecomposable continua. From (19), similarly
as in the case (a), we find a finite set A4; such that K; c L provided

A;c LeC(X) and LnN(X\K)#0O,
where K; = cl(D,.-1 \D,.;)).
Let (s?, s1), (s2, s3), ..., (s2, si) be the collection of disjoint open inter-

vals in [0, 1] the union of which is a complement of () T;. Then
i=1

K; = cl(Ds1\ Dyo)
i i
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is a continuum irreducible between
L;=D,ou{C: C r\D,}) # 0}
J

and
Rj= S}UU{C;: C,mE,jl¢¢}.

Take an arbitrary point b;eK;nL; and an arbitrary point c;eKjn R;. Fix
ceX\K. The set

A={c}u .Ql AV _Ql {bj, ¢}

is a set for which we were looking for. The proof of (21) is complete.
Now we have

(22) If XeF and K is an irreducible continuum in X, then there is a
finite set A = X such that int K = M provided A = M eC(X).

In fact, it follows from (6) and (9) that int K has a finite number of
components U,, U,, ..., U,. The sets clU,, clU,, ..., clU, are irreducible
continua by (20). Therefore, there are finite sets A; < X such that U, =« M
provided 4, c MeC(X)fori=1,2,...,n by (21). The set A defined by the

equality
A=A, UA,L...UA,

has the required properties.
(23) If
lay, a3, ...,a,y = XeF, Ry, Ry,...,R,} cC(X),

X=RogUR,uU...UR,

and R; is irreducible between a; and Ry UR, U...UR;,_, fori=1,2,...,n,
then there is a finite set A — X such that X\R, = M provided A = M €C(X).

We proceed by induction. For n =1 Proposition (23) is an immediate
consequence of (22) (cf. (2)). Assume now that (23) is true for n. Let

{bl, b29 ey bn+l} < Xeys {KO’ Kl’ ey Kn+l} < C(X),

X=KouK;vu...UK,,,

and K; is irreducible between b, and KouK;u...uK;_, fori=1,2,...,
n+1. Put g, =b;,,, Ro =KoquUK,, Ri=K;,, fori=1,2,..., n. According
to the assumption there is a finite set 4 such that

X\Ro = X\(KoUK,) =M
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provided A ¢ M eC(X). Then
c(X\(KouK,) =M

provided A ¢ M eC(X). According to (22) there is a finite set B such that
int K, «c M provided Bc MeC(X). Let

AUB < MeC(X).
Then int K, ucl(X\(KouK,)) = M. Since

(X\Ko) n(X \cl(X\(Ko UK)))) cintK,,

we conclude that the set A U B has the required property.

J. B. Fugate has asked the following: Suppose X € #. Is X irreducible
about some finite set? (University of Houston Mathematics Problem Book,
Problem 113). The following theorem gives the answer:

(24) THeoreM. If X € #, then X is finitely irreducible.
Proof. Consider the following collection 2 < C(X):

P = {K €eC(X): there exists a finite set A such that 4 UK eS(X)}.

First we prove that
(24.1) if K, €2, K,., <K, for n=1,2,..., then

©
K= (N K,e?.

n=1

In- fact, let A, be a finite set such that 4, U K,eS(X). We can assume
that a,, a,, ... is a sequence of points of X such that for each n=1, 2, ...
there is a positive integer k, such that

A,ciay, az, ..., 4}

By induction we construct a sequence {R;} of subcontinua of X such that R,
= K and R, is an arbitrary continuum in X irreducible between a,,, and
Rou...UR,. Put

Q,, = RoU...UR".
Then Q, = Q,., and Q, are continua for n=1, 2, ... Observe that
X = L_)l 0,.

Indeed, if x € X'\ K, then there is a positive integer n such that xe X \K,.
The continuum @, contains all points of the set 4, and intersects K,: thus
K,uQ,, = X because 4,UK,eS(X). Hence xeQ, .

6 — Colloquium Math. 56.1
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The relations
U Qn =XeF
n=1

imply that Q, = X for some positive integer n. Applying (23) we find a finite
set A < X such that X\K < M provided 4 <« M eC(X). This means that
AuKeS(X), ie, Ke2.

By Brouwer’s reduction theorem and (24.1) we infer that

(24.2) there exists a minimal element of 2.

Fix an arbitrary minimal element K of 2 (cf. (24.2)). There exists a finite
set A such that 4 U K €S(X). Then K €I (A4, X). Moreover, we conclude that
Kel,(A, X) by (5) and the minimality of K in .2 It follows from (11) that
K €.7. From (16) it follows that if K is nondegenerate, then there are a point
a and a proper subcontinuum N of K such that \a} U N €S (K). Proposition
(22) implies that there is a finite set B such that int(cl(K\N)) € M provided
that B < M eC(X). We prove that

AuBUNEeS(X).

Let QeC(X) be such that AUBUN < Q. Note that QUK = X be-
cause AUK cQuK and QUK eC(X). Hence

X\Q c K\N ccl(K\N).
Since X'\Q is open, X\Q < int(cl(K\N)). Moreover, B c Q €C(X), and so

int (cI(K\ N)) < Q.

Therefore Q = X.
Thus AuUBU N€eS(X), ie, NeZ, contrary to the choice of K. The
proof is complete.

Proposition (8) and Theorem (24) imply
(25) CorROLLARY. A metric continuum X is irreducible about a finite set if

and only if X is not the union of a countable monotonic collection of proper
subcontinua.

Properties of # (almost all propositions proved here) used in the proof
of Theorem (24) imply also some new information about the properties of
finitely irreducible continua.
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