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1. Imtroduction. Throughout the paper, @ = (X, U) denotes a digraph,
i.e., a finite directed graph without multiple arcs (loops are admitted),
where X is the set of vertices and U is the set of arcs.

A circuit of G is a sequence of different vertices z,, @,, ..., 2, such
that (»;, #;,,) for< =1,2,...,p—1 and (x,, «,) are arcs of G. A digraph
@' =(X, V), where V < U, is called a partial digraph of G. If each vertex
of G is of outdegree and indegree 1, then G is a permutation digraph.
A digraph G is hallian if G contains a partial permutation digraph.

It is easy to see that G is hallian if and only if there exists a system
of pairwise disjoint circuits which cover all vertices of @.

Let @ = (X, U) be a digraph and let

Ig(z)= {y: (x,y)e U} for zeX,
I'g(4) = UTlg(x) for A c X.
xed

The following proposition is merely a reformulation of the famous
theorem of Ph. Hall (see [2], Theorem 5.1.2).

ProposSITION 1.1. A digraph G = (X, U) 48 hallian if and only if
[I'e(4) > 4]
Jor every non-empty set A = X.

A digraph G = (X, U) is said to have a hypoproperty ? if @ does not
have property # but G —x has property 2 for every vertex z e X, where
G —x denotes the subdigraph generated by the set X — {x}.

The main purpose of this paper is to show that there exists no hypo-
hallian digraph. We shall prove also that if a digraph ¢ = (X, U) with
n vertices has at least {n/2}-+1 hallian subdigraphs of the form G—a
(z € X), then @ is hallian.

Let us define now hallian digraphs in terms of permanents and
transversals.
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Let A = (a;) be a 0-1 square matrix of dimension n. There exists
a one-to-one correspondence between the family of 0-1 matrices and the
family of digraphs. Let G(A) denote the digraph associated with A. The
vertices of G(A) correspond to rows and columns of 4, and (¢, j) is an arc
of G(4) if and only if a; # 0. If G is a digraph, then the adjacency matrix
of @ is its corresponding 0-1 matrix.

One can easily prove now the following

ProPOSITION 1.2. A digraph G(A) is hallian if and only if per(4) = 0.

Let &¥ = {8;, 8:, ..., 8,} be a system of subsets of N = {1, 2,...,n}.
There exists also a one-to-one correspondence between the family of such
systems and the family of digraphs. Namely, let G(8) denote the digraph
associated with &. The vertices of G(8) correspond to elements of N and
I'gs)(t) =8; (teN). If @ =(X,U) is a digraph, then & = {I;(w):
x € X} is its corresponding system of subsets.

We shall say that the family & = {8,: © € N} satisfies Hall’s condition
if the inequality

I.Lljusfl > | M|

is valid for every finite subset M of N. We shall, for brevity, write
S(M) = 8,.
teM

As a consequence of the above we have

PropoSITION 1.3. A digraph G(8) is hallian if and only if the family
& has a transversal, i.e., if and only if & satisfies Hall’s condition.

The next section contains the main results of this paper presented
in terms of transversals and the equivalent formulations of the results
but in terms of digraphs and permanents are contained in Section 3.

The reader is referred to [1]-[3] for other terms not defined here.

2. Main results. Let & = {8;: i€ N} be a system of subsets
of N and let us define systems

.9’,={Si,Sé,...,Sl_l,Sf_H,...,S;} (leN),

where 8! = 8, — {I} (4 € N). It is clear that the digraph G (8)—1 corresponds
to the system &, for every |l € N. We prove now the main theorem of this
paper.

THEOREM 2.1. If a family & = {8;:¢ € N} of subsets of N has no
transversal, i.e., if there exists an M < N such that |S(M)| < |M|, then
no &, has a transversal for every 1l € S(M).

Proof. Suppose that there exists an M < N such that |S(M)| < | M|
and let l € S(M). If l € M, then write M’ = M — {I}. In this case we have
I8 (M) = |USH] < |US{ -1 = 18(M)| -1,

.EM’ ieM

1
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gince 1 ¢ 8'(M’). Therefore '
I8(M')| < I8(M)| -1 < |M|—-1 = |M'|.
On the other hand, if I ¢ M, then also
18" (M) < 18 (M)] < | M.

Thus, for every le S(M), &, does not satisfy Hall’s condition so
that &, has no transversal.

Let J denote the following property: & has-a transversal. If we de-
fine & —1 by &;, then Theorem 2.1 implies

COROLLARY 2.1. J 8 not a hypoproperty of &.

Let t(n) be the smallest integer such that every system & = {8;:
1€ N} of subsets of N ={1,2,...,n}, which has at least t{(n) sub-
systems &; having transversals, has also a transversal.

The next theorem computes #(n). .

THEOREM 2.2. t(n) = {n/2} +1.

Proof. Let us put

L ={l: &, has a transversal}.

We have to prove now that if |L| > {n/2} +1, then & has a transversal.
Let M be any subset of N and assume-first that L ¢ M. Hence, there
exists an ! € L — M, and then [§'(M)| > | M|, since &, satisfies Hall’s con-
dition. Therefore |S(M)| > |8'(M)| > |M|. Let us consider the opposite
case, i.e., L c M. For every l e L we have |[S'(M — {I})| > |M|—1, and
if there exists an ! € L such that |8'(M — {I})| > |M|—1, then

IS(M)| > |8H (M — (1) > | M|.
Therefore, assume that
(1) IS (M —{1})| = |M|—1 for every [ e L.

We show now that also in this case |S(M)| > |M|. Indeed, if this
inequality does not hold, then |S(M)| = |M|—1 by (1). This implies
that there exists an M, « N such that |M,| = |M|-1, S(M) = M,,
and S'(M —{l}) = M, for every le L, since 8:c 8; and |8 (M —{1})|
= |8(M)| = |M|—1 = [M,|. Thus, I ¢ M, for every | e L so that LnM,
=@. We have |M,|= |M|—1> |L|—1, since L< M, and by assumption
we obtain \

|M,UL| = |M,|+|L| > |L|—1+4|L| > {n/2} +{n/2} +1 > n+1.
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We arrive then at a contradiction, since L, M, < N, LnM, =0
and |N| = n. Hence |S(M)| > |M| for every M < N.

Finally, we have to show that this bound cannot be improved. Let
n be an odd number and let

8, =1{2}, 8,={n—-1} and 8, ={i—1,i+1}
(i=2,3,...,n—1).

It is easy to see that L consists of all odd numbers ! (1 <1< n). There-
fore, |L| = {n/2} and & does not have a transversal.
If n is an even number, then let

8, =12}, 8 ={i—1,i+1} (6 =2,3,...,n—2),
8,1 ={n-2}, 8, = {n}.

In this case again L consists of all odd numbers ! (1 <1< n). There-
fore, |L| = {n/2} = {(n+1)/2} and & does not have a transversal.

3. Corollaries. This section presents the main result of this paper
in terms of digraphs and permanents.

Firsgt, let us consider digraphs.

The following theorem is the counterpart of Theorem 1.1.

THEOREM 3.1. If a digraph G = (X, U) is not hallian, i.e., if there
evists an A = X such that |I'g(A)| < |4|, then G —x is not hallian for every
z e lg(A).

COROLLARY 3.1. There exists mo hypohallian digraph.

THEOREM 3.2. Let G = (X, U) be a digraph with n wvertices. If the
number of hallian subdigraphs of the form G —x 18 at least equal to {n[2} +1,
then G is also hallian.

COROLLARY 3.2. Every hypohamiltonian digraph is hallian.

Let now A be a 0-1 square matrix of dimension n and let 4, denote
its submatrix obtained by deleting the ¢-th row and the i-th column
(t=1,2,...,n)

The results of the preceding section in terms of permanents have the
following form:

THEOREM 3.3. If per(A) = 0, then there exists at least ome i such
that also per(4,) = 0.

THEOREM 3.4. Let A be a 0-1 matrixz of dimension n. If the number of
submatrices A; which satisfy per(A;) # 0 is at least equal to {n/2}+1,
then per(A) # 0.
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