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In algebraic topology one uses groups and their homomorphisms in
order to study topological properties of spaces and mappings. However,
in many cases the transition from topology to algebra by means of the
notion of a group is difficult. This situation suggests to use other, more
primitive, algebraic structures which may be assigned to topological
phenomena less accessible to methods based on the concept of a group.
To such notions belongs the notion of a power domain. In the present
note I will give some elementary properties of this notion and I will illus-
trate it by some examples.

I wish to thank A. Bialynicki-Birula, R. Duda, E. Marczewski,
E. Plonka and A. S8zankowski who read the original manuscript, for their
valuable suggestions.

1. Definition and examples. By a power domain we understand a sys-
tem consisting of a set Z and of a family of functions

an: Z > 27

assigned to indices m =0, 41, 4+2,... and satisfying the following
conditions:

(1.1) a,(2) = # for every z2¢Z,

(1.2) a,a,(?) = a;.,(2) for every zeZ and for k,m =0, +1, +2,...

We denote this power domain by (Z, a,), or shortly by (Z). If
(Z) = (Z, ay), then w((Z)) denotes the cardinality of the domain (Z),
that is- the cardinality of the set Z of its elements.

Notice that the power domains are a special kind of the universal
algebras (see [2], p. 8). '

A power domain (Z, a,,) is said to be pure if it satisfies the following
condition:

(1.3) For every zeZ and every m = 0, +1, 42, ... the relation a,,(z)
= ay(2) tmplies the relation ay,,,(2) = ar(2) for every k=0, £1, 4-2, ...

Consider some examples illustrating these notions:
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(1.4) Example. If Z is a group (with the group operation denoted
as multiplication), then, setting a,,(2) = 2™ forzeZandm =0, +1, +2,...,
we get a power domain (Z, a,,). This domain is said to be the power do-
main of the group Z; we denote it by (Z). It is clear that (Z) is pure.

(1.5) Example. Let Z denote the set of all integers. Setting

0 if m is even,
an(2) = e
m-z if m is odd, »
we get a power domain which is not pure, because a; # a;, although
Ay = Qy.

(1.6) Example. Let 8" be the n-dimensional sphere with n > 0.
Then for every m = 0, +1, 42, ... there exists exactly one homotopy
class of maps of 8" into itself with a representative y,,: 8" — 8" being
a map of the Brouwer’s degree m. Let X be a space. For every map
f: 8" - X let [f] denote the homotopy class with the representative f.
Consider the set Z of all such homotopy classes and let us set

en([f]) = [frm] for every [fleZ.

It is clear that a,: Z —Z and that both conditions (1.1) and (1.2)
are satisfied. The so obtained power domain (Z, q,) is said to be the
n-th homotopy domain of the space X; we denote it by 4,(X).

Let us show that 4,(X) is pure. Consider a point a,e8" and two
open and disjoint balls G, @  (in the space 8™ with the spherical met-
ric) contained in 8"\ (a,). One sees easily that, for given integers k and m,
there exist two maps ', 9" : 8" — 8" such that

124

Y =y Y =vVm
and that
Y (8"\G) = (a;), 7 (8"\G") = (a,).

It is well known (see, for instance, [1], p. 44) that the map y;,,, is
homotopic to the map y : 8" — 8" (being the join ¥’-y” of the maps y’, ")
defined by the formulas: '

v (x) if zeS"\G",

v (@) = V(@) if 38N\ .

Assume now that f: 8" - X is a map and m is an integer such that
n ([f1) = ao([f]) = [fyo]. Since v, is null-homotopic, we infer that
Sfvm + 8 - X is null-homotopic. Consequently, there exists a map g of
the (n+1)-dimensional ball @"*!, bounded by 8", into X such that

g(x) = fyn(x) for every point xeS".
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Now let us notice that there exists a homotopy
P Q™ X0, 1) » Q"
satisfying the conditions:
p(®,0) =a for every point ze@"*!,
y(x,t) =2 for every (w,1)e(S"\G")x<0,1),
P(@"1, 1) = 8"\G.
Setting
p(z,t) = gy(x,t) for every (z,t)eS"x<0,1),
we get a homotopy ¢ : 8" X {0,1> - X such that
o(x,0) = fy,(r) and ¢(x,1) = f(a,) for every point zeS",
p(z,t) = f(ay) for every (z,t)e(8"\G')x{0,1>.
It follows that
Pem =fp =¥ ¥") = fr'fr" =fr' fla0) = fy' = fr.
Hence a;,,,([f]) = [fvxim] = [fre]l = ax([f]), that is condition (1.3)

is satisfied and consequently the n-th homotopy domain 4,(X) is pure.

(1.7) Example. Keeping the notations 8", X, y,, used in example
(1.6), let us denote by Z the collection of all homotopy classes [f] of maps
f: X — 8". Setting

an([f]) = [ymf] for every [fleZ,

we get a function a,:Z —Z and it is clear that conditions (1.1) and
(1.2) are satisfied. Thus we get a power domain (Z, a,) which we call
the n-th cohomotopy domain of the space X ; we denote it by 4™ (X). Notice
that the n-th cohomotopy domain of a space is defined for every space X,
in contrast to the n-th cohomotopy group of X, defined only if we subject
X to some restrictive conditions.

(1.8) ProBLEM. Does there exist a space X such that the n-th coho-
motopy domain A"(X) is not pure? (P 784).

2. ‘Homomorphisms of power domains. Since power domains are
a special kind of universal algebras, the notions of a homomorphism
and of an isomorphism (onto) maintain their sense. Explicitly, a homo-
morphism of a power domain (Z, a,,) into another power domain (Z', a,,)
is a function ¢ : Z — Z' such that

@a,(2) = a,p(2) for every z¢Z and for m =0, +1, 42, ...

Then we write ¢ : (Z, a,) - (2, a,)-
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A homomorphism ¢:(Z, a,) - (Z', a,,) is an isomorphism if ¢ is
one-to-one (onto). It is then clear that the inverse function ¢~! is an iso-
morphism of (Z', a,,) onto (Z, a,,).

If there exists an isomorphism ¢:(Z, e,) - (%', a,,) then power
domains (Z, a,), (Z', a,) are said to be isomorphic and we write (Z, a,,)
~ (%', a,). It is clear that if (Z, a,) ~(Z', a,,) and if (Z, a,) is pure,
then (Z', a,,) is also pure.

Let us illustrate these notions by the following examples:

(2.1) Example. If ¢ is a homomorphism of a group Z into another
group Z' then it is clear that ¢ is also a homomorphism of the power
domain (Z) of the group Z into the power domain (Z') of the group Z'.

(2.2) Example. Let X, X' be two spaces and let g : X — X' be a map.
Assigning to every homotopy class [f] with a representative f: 8" — X
the homotopy class [gf] with the representative gf: 8" — X', we get
8 homomorphism

Iwm) * An(X) g An(X’)7

called the homomorphism of the n-th homotopy domain induced by the
map g. It is clear that g, is not changed if we replace g by any map
g : X - X' homotopic to g, and that the identity map ¢ : X — X induces
the identity isomorphism ¢y : 4,(X) — 4,(X). Moreover, it is clear
that g, depends covariantly on g, that isif g: X -~ X' and ¢': X' — X"’
are maps, then homomorphism (g'g)y) : 4,(X) - 4,(X"') induced by
the map ¢'g: X - X" is the composition g9, of homomorphisms
Iyt An(X) > 4,(X") and gy, : 4,(X) > 4,(X") induced by ¢ and
by ¢’'. It follows that

(2.3) If X, X' are homotopically equivalent spaces, then their n-th
komotopy domains A,(X) and A,(X’) are isomorphic.

(2.4) Example. If g : X — X' is a map, then assigning to every homo-
topy class [f'] with a representative f': X' — 8" the homotopy class
d™([f']) = [f g] with the representative f g: X — 8", we get a homo-
morphism .

g™ AM(Z') - 4™(2),

called the homomorphism of the n-th cohomotopy domain induced by
the map g. It is clear that g™ is not changed if we replace g by any map
homotopic to g and that the identity map ¢ : X — X induces the identity
isomorphism ™ : A"(X) - 4A"(X). Moreover, one sees readily that g™
depends contravariantly on g, that is if g: X - X' and ¢ : X' > X"’
are maps, then (g'g)™ = g™g'™, ‘

It follows that

(2.8) If X, X' are homotopically equivalent spaces, then their m-th
cohomotopy domains A™(X) and A™(X') are isomorphic,
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3. Subdomains. Let (Z,a,) be a power domain and let Z, be a sub-
set of Z such that

a,(Z,) = Z, for every m =0, 41, 42,...
Consider the function ay, : Z, - Z, defined by the formula
om(?) = a,(2) for every zeZ,.

It is clear that (Z,, a,,) is a power domain. We say that this power
domain is a subdomain of the power domain (Z, a,) and we write (Z,, a,,)
< (Z, a,). For brevity, we shall say in this case that Z, is a subdomain
of (Z,ay,).

Notice that the notion of a subdomain is a special case of the notion
of a subalgebra (see [2], p. 34), restricted to power domains.

It is clear that each subdomain of a pure power domain is pure
itself.

(3.1) Example. If (Z, a,) is a power domain and z,e Z, then the
subset Z, of Z consisting of all elements of the form a,(z,), m =0, 41,
+2,...,1s a subdomain of (Z, a,). The cardinality of Z, (which is either
a natural number or ¥,) is said to be the order of the element z,.

(3.2) Example. It is clear that if ¢ : (Z, a,) - (Z', a,,) is a homo-
morphism, then setting a,,(z') = a,,(2') for every 2z e¢p(Z) we get an
operation ay, :¢(Z) - ¢(Z) such that (¢(Z),ay,) is a subdomain of
(Z', a,). We write ((p(Z), a;m) = @(Z, a,,) and say that ((p(Z), a(',m) is the
tmage of (Z, a,) by the homomorphism ¢.

In particular, if ¢ is an integer, then setting ¢(z) = a,(2) for every
zeZ we get a homomorphism ¢ : (Z, a,) - (Z, a,). The image of (Z, a,,)
by this homomorphism is a subdomain of (Z, a,,) consisting of all elements
zeZ of the form 2z = a,(2’) with 2’¢Z. We denote this subdomain by
q(Z, ay).

Let us observe that the image of a pure power domain by a homo-
morphism need not be a pure power domain. In fact, let Z denote the
set of all integers and Z' — the set consisting of 0 and of all odd integers.

Setting ¢(2) = 2 if 2¢Z’ and ¢(2) = 0 if 2¢Z\Z', we get a function ¢
mapping Z onto Z'. Now let us set

a,(2) =m-2 for every ze¢Z and for m = 0;"%+1, +2,...,

, m-2 if 2’¢Z and m is odd,

@y (2 ) = cp ! , .
0 if 2¢Z and m is even.

One sees easily that (Z, a,,) is a pure power domain and that (Z’, a:n)

is not a.pure power domain (because a, = a,, but a; # ;). Moreover,

the function ¢ is a homomorphism of (Z,a,) onto (Z', a,,), because
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pa,(2) = ¢(m-z) for every integers m and 2, and if m-z is odd, then
p(m-2) =m- 2 = a,p(2), and if m-2 is even, then g(m:2) = 0 = a,@(?).

(3.3) Example. If ¢:(Z, a,) -~ (Z', qa,) is a homomorphism and
(Zy, apn) < (Z', a,), then setting Z, = ¢~'(Z,) we get a subdomain
(Zy, apy) of (Z, a,) called the preimage of the subdomain (Z,, a,,) of
(Z', a,,) and we write (Z, ap,) = ¢ (Zy, Gom)-

4. Simple domains and their joins. By a simple domain we under-
stand a power domain (Z, a,) in which there exists an element 2, (called
the null-element of (Z, a,)) such that a,(2) = 2z, for every zeZ.

Notice that the power domain (Z) of each group Z is simple, but
the n-th homotopy domain A4,(X) is simple if and only if the space X
is arcwise connected.

Let (Z) = (Z, a,) be a finite simple domain with the null-element
2, and let N denote the additive group of integers. Consider the set Z
consisting of pair (0, 2,) and of all pairs (n, 2), where 0 = ne and z¢ Z.
Setting

ap(n,2) = (m-n, a,(2)) for every (n,2)eZ,

one gets a simple domain (Z) with the null-element (0, 2,). Every power

domain isomorphic to (2 ) is said to be a cluster with the support (Z). Notice
that it is determined (up to an isomorphism) by support (Z) and it is pure
if and only if its support (Z) is pure.

Consider an arbitrary set A of elements 4 (called indices) and assume
that to every ieA there is assigned a simple domain (Z;, a; ,,). Let 2, ,
denote the null-element of (Z;, a, ,,) and let Z be the set of all pairs (2, 1)
with 2e¢Z, and AeA. By the join of domains (Z,, a,,) we understand
the simple domain (Z, a,,), where we identify all pairs of the form (z, ,, 1)
and where the operation a, is defined by the formula

am(2y2) = (am(2),4) for (z,4)eZ and for m =0, £1, 42, ...
One sees easily that the join of simple domains (Z;, a, ,,) is pure if

and only if all these domains are pure.

(4.1) Example. Let R*, where %k is a natural number, denote the
group consisting of all systems (in,, m,,..., m;) of integers with the
group operation given by the formula

(myy my, ..., mk)+(m1’ m;; ceey m;c) = (my+ my, Mo+ Myy ooy My, + my).
Let us observe that if k> 1, then the power domain (N¥) is the
join of 8, domains isomorphic with (). It follows that (W) ~ (N}) if
either ¥ =1 == 1, or if both numbers %k, are greater than 1.

(4.2) Example. If Z is a finite group, then the power domain (N*x2)
is, in the case ¥ = 1, isomorphic to the join of (Z) and of a cluster with
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the support (Z). If, however, k> 1, then the power domain (R*XxZ)
is the join of (Z) and of 8, clusters with the support (Z). It follows

(4.3) If Z is a finite group and %k, 1 are natural numbers, then (N X Z)
~ (W xZ) if either k =1, or if both numbers k,1 are greater than 1.

5. Quotient domains. Let (Z,,q, ,,) be a subdomain of a power domain
(Z, a,). Assign to every element z¢ Z the set [2] = Z defined as follows:

If 2zeZ\Z,, then [2] consists of one element 2z only.

If zeZ,, then [2] consists of all 2’¢ Z, such that a,(z) = a,(z').

Notice that ze[2] for every zeZ and that different sets [2] are disjoint. .

Let Z denote the collection of all sets [2] and let us assign to every
m =0, +1, +2,... a function a,:Z — Z defined as follows: .
[a,(2)] if zeZ\Z,,

Wlle) =11 it zez,.

It is clear that
(5.1) a,([2]) = [¢] for every [z]eZ°.
Let us show that
(5.2)  anan([2]) = a,..([¢]) for every [¢]¢Z and for m,n =0, +1,...

We distinguish the following three cases:
Case 1. zeZ,.

Then a,(?), a,.,(?2)e Z, and, consequently,
an([2]) = [a0(2)],
@y 0 ([2]) = u([20(2)]) = [@020(2)] = [a0(2)] = @p.n([2])-
Case 2. ze Z\Z, and a,(?)eZ,.
Then a,,.,(2) = a,0,(2)eZ, and.
0 am([2]) = an([am(2)]) = [00am(2)] = [a0(2)] = am.n([2]).

Case 3. ze Z\Z, and a,(2)e Z\Z,.
Then ze¢ Z\Z, and

&n&m([z]) = &n([am(z)]) = [anam(z)] = [an¢~n(z)] = aom'n([z])°

Thus relation (5.2) is proved. It follows by (5.1) and (5.2) that (Z, d,)
is a power domain. We call it the quotient domain of (Z, a,) by Z, and
denote by (Z, a,,)/Z,.

Remark. Notice that quotient domains constitute a special kind
of quotient algebras (see [2], p. 35) with the congruence relation = de-
fined ‘as follows:

z = 2’ means that either z = 2’ or 2,2'eZ; and ay(2) = ay(2).
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(5.3) Example. Let (Z, a,) be the n-th homotopy domain A4,(X)
of a space X. Hence Z is the set of all homotopy classes [f] of maps
f:8" - X and a,([f]) = [fym] where y, : 8" - 8" is a fixed map with
degree m. It is clear that the subset Z, of Z consisting of all homotopy
classes [f] such that f: 8" — X is homologically trivial (that is f induces
trivial homomorphisms of all homology groups of 8" into the correspon-
ding homology groups of X) is a subdomain of Z. The quotient domain
4,(X)|Z, will be said to be the reduced n-th homotopy domain of X; we
denote it by Aon(X ). It is clear that every map ¢ : X - X  induces cova-
riantly a homomorphism ¢, : Lin(X ) > Aon(X' ), and we infer that reduced
n-th homotopy domains of two homotopically equivalent spaces are isomor-
phie.

(6.4) Example. Let (Z, a,,) = 4"(X) and let Z, denote the collection
of all homotopy classes [f], where f: X — 8" is a homologically trivial
map. It is clear that Z, is a subdomain of Z. The quotient domain 4™ (X)/Z,
will be called the reduced n-th cohomotopy domain of X. We denote it by

AO"(X ). It is clear that every map ¢: X — X  induces contravariantly

a homomorphism ¢ : AMX') > A™(X) and we infer that reduced n-th
cohomotopy domains of two homotopically equivalent spaces are isomorphic.

6. Power domains of finite abelian groups. It is clear that power
domains (Z), (Z') of two isomorphic groups Z,Z’ are isomorphic. In ge-
neral, the converse is not true. However, it is-true in the special case
of finite abelian groups.

If Z is an abelian group, then we denote the group operation by
addition. The functions e, in the power domain (Z) = (Z, a,) are then
given by the formula |

a,(?) =m-z for every zeZ and for m =0, +1, +2,...

Denote by ¢-Z (for every integer ¢) the subgroup of Z consisting of
all elements of the form ¢-z. The power domain ¢-(Z) (as defined in
(3.2)) is then the domain of the group ¢-Z, that is

q-(Z) =(¢°2).

In the sequel we shall denote by R the (additive) group of integers
and by R, (for every m = 2, 3,...) the group of rests modulo m. Notice
that for every natural number m > 2 and for every natural number ¢

(6.1) «((R,) = (m, q) (g (N,)), where (m,q) denotes the greatest
common divisor of m and of q.

Let us prove the following
(6.2) THEOREM. If Z,Z' are finite abelian groups, then isomorphism
of the power domains (Z),(Z') implies isomorphism of the groups Z,Z’ .
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Proof. It is known (see, for instance, [3], p. 308) that every finite
abelian group Z is isomorphic with the group R, XN, X...xXNR,,,
where m,, m,, ..., m; are natural numbers > 2 such -that

(6.3) my|m;,, fori=1,2,...,k-1.

The system. of numbers (m,, m,, ..., m;) is uniquely determined by
the group Z. Thus, in order to prove theorem (6.2), we may assume
that

(6.4) Z = Ry XNy, X oo XNy,

and we have only to show that the system of numbers (m,, m,, ..., m;)

satisfying condition (6.3) is determined by the power domain (Z).
Notice that the number m,; is determined by the power domain (Z),

because it is the least natural number ¢ such that w(q-(Z)) = 1. Let

(6.5) My = PPt ... D,

where p,, ps, ..., p, are prime numbers, different from one another, and
Y1y Va4 +..y ¥, aTe natural numbers. It follows by (6.3) and (6.5) that

(6.6) m; = p,otopyht. b for i =1,2,...,k,
where 0 < y; ;<v; for j =1,2,...,r and p;; < p;y,; for ¢ =1,2,...
eo.yk—1 and for j =1,2,...,7.

It follows by (6.1) that the quotient w((Z)):w(p;*(Z)) is equal to
p¥, if p;;>1 and it is equal to p}y with k; <%, if u,; = 0. Hence k is
the greatest of the numbers %y, k,, ..., k, such that

0((2) : o(p;(2)) = .

Consequently, k¥ is uniquely determined by the power domain (Z).

If k£ =1, then the system (m,, m,, ..., m;) consists of only one number
m, and is determined by (Z). Assume that ¥ =n-+1>1 and that for
k < n the system (my, m,, ..., m;) is determined by (Z).

Let l; denote, for j =1, 2, ..., r the number of exponents u;; equal
to u, ;. Hence 1L <1 < k. It follows by (6.1) that if u = yu;; with 1 <I;
(that is if 4 = u,;), then the quotient w((Z)): w(p}-(Z)) is equal to p}*.
If, however, u > u,;, then this quotient is less than p¥#. Thus l; and
ty,; (forj =1,2, ..., r) depend only on the power domain (Z). Hence the

number m; = Pt pe? ... pLbT is determined by (Z) and the same is
with the numbers s = ~min l; of elements equal to m, in the system
(Mg, Mgy .oy my). I=h2 et

Now let us observe that m,-(Z) is isomorphic to the domain of the
group N, pofmy Xooe X Ry, By the induction hypothesis, the system
of numbers (mgy,/m,, ..., m;/m,) is determined by the power domain
m,+(Z), hence also by the power domain (Z). It follows that also the
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system (m,, m,, ..., m;), where m, = m, = ... = m,, is determined by
the power domain (Z). Thus the proof of theorem (6.2) is finished.

For every group Z, let us denote by 7 (Z) the torsion of Z, that
is the subgroup of Z consisting of all elements of finite order. We get from
theorem (6.2) the following

(6.7) COROLLARY. If Z,Z are two abelian groups with isomorphic
power domains and if T (Z) is finite, then the groups T (Z) and I (Z') are
isomorphic. | '

Proof. It is clear that (7 (Z)) coincides with the subdomain (Z),
of the power domain (Z) consisting of all elements of finite order, and
that (7 (Z')) coincides with the subdomain (Z’), of (Z') consisting of all
elements of finite order. Since (Z) and (Z') are isomorphic, we infer that
(Z), and (Z'), are isomorphic. It follows, by theorem (6.2), that J (Z)
is isomorphic with J(Z').

7. Power domains of finitely generated abelian groups. Let us prove
the following

(7.1) THEOREM. The power domains (Z),(Z') of two finitely generated
abelian groups Z,Z' are isomorphic if and only if one of the two following
conditions are satisfied:

(*) Z and Z' are isomorphic.

(**) The torsion groups I (Z),T (Z') are isomorphic and the ranks
of Z and of Z' are greater than 1.

Proof. It is clear that (*) implies (Z) ~(Z'). If the condition (**)
1s satisfied, then (see [3], p. 308) there exist two integers k,l > 1 such
that
(7.2) Z~NxT(Z) and Z' ~NWxIT(Z),

and we infer by (4.3) that (Z) ~(Z').

On the other hand, if (Z) ~(Z'), then we infer by corollary (6.7)
that 7 (Z) ~J (Z'), hence Z and Z’ satisfy (7.2). If k¥ = 1, then the con-
dition (*) is satisfied. If k¥ = I, then we infer by (4.3) and (7.2) that k,1 > 1,
that is the condition (*#*) is satisfied. Thus the proof of theorem (7.1)
is finished.
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