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As it is known (see [1] and [2]), a big part of the classical differential
geometry belongs to linear algebra, more precisely, to the theory of mod-
ules over a commutative ring #. A purely algebraic theory can be de-
velopped in a way such that, in the case where £ is the ring of all real
smooth (i.e., of class C*) functions on a smooth manifold M, we get many
fundamental theorems from the differential geometry on M. In partic-
ular, the theory of exterior forms (i.e., of multi-linear skew-symmetric
mappings) can be treated in such an algebraic way (for details, see [1]).

The aim of the present paper is to give a purely algebraic proof of
the formula for the second exterior differential, i.e., the formula estab-
lishing a connexion between the second exterior differential and the curva-
ture tensor. The proof given in this paper differs from the algebraic proof
given in [1]. The degree of generality is here bigger than in [1] or [2].
The notion of a module is replaced by that of an abelian group.

1. Skew-symmetric mappings. In this paper group means always
abelian group written additively and additive mapping means homomor-
phism. If V is a set, then V" denotes the Cartesian product V xV x...
XV (n times).

- Suppose that W,, W, and W are groups and that there is defined
a multiplication
(1) w,wse W  for w,e W, and wye W,,
that is, a bi-additive mapping form W, x W, into W. The value at a pont
(wy, wy)e Wy x W, will be denoted by w,w, (by hypothesis, (w,+w,)w,
— w,w, +w,w,, and the dual identity is also true). Then, for any set V
and for any skew-symmetric mappings L,: V" - W, and L,: V® - W,,
we can define the exterior product L, A L,: V'*°* — W which also is skew-
-symmetric. Namely,

Ly ALy(Vyy ey Vpyy)

= ngn(il’ ...,’i,._'_s)Ll(’v,-l, .”’,vir)Lz(/vir+l’ ...,vir+s) fOl‘ '01, "'7’01'+8€ V,
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where }' is extended over all permutations <¢,,...,4,,, of integers 1, ...
vooy s such that 4 < i, < .o <y by < tpyy < ... < pyg, and sgn(...)
is the sign of permutation.

In this paper we consider only multiplication (1) of one of the follow-
ing two types:

1° W, is a group of homomorphisms w,: W, - W and the mul-
tiplication is defined by

w,w, = w,(w,) for w;e W; and w,e W,.

2° W,, W, and W are groups of all endomorphisms in a given group
W,. Multiplication (1) is the composition

W, Wy, = w0w, for w e W, and wy,e W,.

1.1. For every mapping J from a set V into the group of all endomor-
phisms of a group W and for every skew-symmetric mapping L: V" - W
the following identity holds:

JA(JAL)=(J AJ)AL.
Here
(2) J AJ (v, 05) = J(v1)0d (V) =J (v;)0d (v,)  for vy, VeV,

according to 2°.

Suppose now that V and W are groups. A mapping L: V" - W
is said to be multi-additive or, more precisely, n-additive if the expression
L(v,, ..., ,) is an additive function of each variable v,, ..., v, separately.

If L: V* > W is skew-symmetric and n-additive and S: V™ — V is
skew-symmetric and m-additive, then the formula

S*L(,017 e 'vn+m-l)
= ngn(il, coey npme ) LS (Vs ooy )5 0 1y ooy O ),

where > is extended over all permutations 4, ...,%,,,,_, of integers
1,...,n4+m—1suchthati, <i, <...<t,and ¢, < tpio<...<f%pmin_1
and sgn (...) is the sign of permutation, defines a skew-symmetric and
(n+m —1)-additive mapping S*L:V"**™! ~ W. The most important
case is that of m = 2. If §: V2 - V is 2-additive and skew-symmetric
and L: V" — W is n-additive and skew-symmetrie, then the skew-sym-
metric (n +1)-additive mapping S*L: V**! - W is defined by

S*L(Vyy .0y Vpyy)

= -2(_1)1-“1;(8(”2'7 ’0,-), Viy ooy Uiy 'Ui+17 ey ,’v;‘—l’ 'v;i+17 LR ] vn+1)'
i<j
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In particular,
(3)  8*8(vy, vy, v5) = S(‘S(’”n V3), 'Ua)'i‘S(S('vz’ V3), ?’1)+S(S("73, V1), 772)-

1.2. If 8: V2 > V is skew-symmetric and 2-additive, and L: V" - W
is skew-symmetric and n-additive, then S*(8*L) = (S*8)*L.

1.3. If 8: V2 > V 4s skew-symmetric and 2-additive, and L: V" - W
i8 skew-symmetric and mn-additive, then for every homomorphism J from
the group V into the group of all endomorphisms of the group W the follow-
ing identity holds:

S*(J ALY+J A(S*L) = (S*xJ) A L.

Simple proofs of lemmas 1.1-1.3 are omitted. The lemmas are partic-
ular cases of certain more general statements which are not quoted here.

2. Exterior differential and curvature temsor. In this section V is
a fixed group and S is a Lie multiplication in V, i.e., 8: V2 — V is 2-addi-
tive and skew-symmetric and, moreover, the following Jacobi identity
holds (see (3)):
(4) S*8 = 0.

In this section W is another fixed group and J is a fixed homomor-
phism from the group V into the group of all endomorphisms of the group
W. The mapping J will be called a covariant derivative in W. By defini-
tion, for every veV,J(v): W — W is an additive mapping.

By the curvature tensor of a covariant derivative J we mean a mapping
R which assigns, to any v,, v,¢ V, the additive mapping (homomorphism)

R(vy,v5) = J(v,)0d (v;) —J (v;)0d (v,) —J (8 (v, v,)): W — W.

By the definition (see (2)), R = J A J —8*J.

For any n-linear skew-symmetric mapping L: V" — W, by the ex-
terior differential of L we mean the (n+41)-additive skew-symmetric map-
ping dL: V"' > W defined by dL = J A L—S8 * L.

. By the definition,
n+t1

AL(Vyy <oy Vpyy) =Z (—1)i+1J("’i)(L(”1, ceey U1y Vigay «ovy "’n+1))+

+§;L Vs 7 "717'°-"vi—17'0i+17-'°1"-’j—17'vj+17---"vn+1)-
i<j

2.1. For every mn-additive skew-symmetric mapping L: V"™ — W the
tdentity ddL = R A L holds, that is,

dAL(Vyy «vy Vpys)

= —Z 1)Q+JR (v;5 )(L('vn ceey Vi 19 Vigny ooy Uiy Vjgay ooy 'Un+2))

1<j
for any vy, ..., 0, ,¢V.
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Indeed, by lemmas 1.1-1.3 and identity (4),

ddL = J AAL—8*dL = J A(J AL—8*xL)—8*(J AL—8*L)
=dJ A(J AL)—J A(S*L)—8%(J AL)+8*(8S*L)
=(JAJYAL—(S*J)AL+(S*8)*L =(J AdJ—8*xJ)AL=RAL.

To apply theorem 2.1 to differential geometry, let us assume that M
is a smooth manifold and £ is the ring of all smooth functions on M.
Let V be the module (over #) of all smooth tangent vector fields on M,
and let S be the ordinary Lie product, S(v,,v,) = [v,,v,]. Let W be
any module (over £#) appearing in the differential geometry on M, for
instance, the module V of all smooth tangent vector fields on M, or the
module of all smooth tangent covector fields on M, or the module of
all smooth tangent tensor fields (of a fixed type) on M, etc. Let J be
an ordinary covariant derivative in the module W, i.e., a module-linear
mapping from V into the set of all linear mappings from W into W (ex-
pression J(v)(w), denoted as a rule by the symbol V,w (veV,we W),
satisfies well-known conditions). Then theorem 1.2 yields the well-known
formula for the second exterior derivative. We can also assume that W
is the ring # and that J(v)(a) is the directional derivative of the function
aeZ in the direction ve V. The curvature tensor of this covariant deri-
vative in £ is equal to 0. In this case theorem 2.1 yields the known for-
mula ddL = 0 for differential forms L on M.
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