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1. Introductory remarks. We denote by £ the class of functions
P(z) regular in the open unit disk 4, 4 = {2: |2] < 1}, and satisfying the
conditions P(0) = 1 and ReP(z) > 0 for zin 4. Then we use the symbol )¢
to- represent the class of functions f(z) = 24 a,22+4 ... regular and uni-
valent in 4 and for which f[A4], the image of 4 under f(z), is a convex
domain; in other words, " is the family of normalized convex conformal
maps of the disk. It is well-known that f(2) is in ¥ if and only if
1+2f"(2)f'(2) is in & (see [T]).

If f(2) is in &, then the character of the domain f[4] suggests that
for non-negative real numbers ¢ the function

(1.1) f(z,1) = f(2) +12f (2)

is also univalent and that f(z) is subordinate to f(z,t) (cf. [5]), i.e.,
f(2) < f(z, t). From the latter we infer the existence of a univalent function
w(z, t) satisfying the conditions of Schwarz’s Lemma, namely |(w(z, t)| < |2
for z in 4, such that

(1.2) f(w(z7 t)) + tw(z, t)f’(w(zy t)) = f(#).

The class of all functions w(z, t) satisfying (1.2) for any admissible ¢
and f(z) is denoted by & ; the members of # are all univalent and of bound
one in 4.

The purpose of this paper is to study some properties of the functions
in #. In the next section, it is shown that a function is in & if and only
if it satisfies a Loewner type of differential equation (cf. [7] and [4]);
then, in a subsequent section, this differential equation is exploited to
find some growth properties and coefficient estimates of functions in £.

Similar ideas have been introduced and studied extensively by
Dziubinski and his co-workers (see [1] for further references) in their
study of quasi-starlike functions. It is the case that the notion of a quasi-

* This work was done while the second author was a Visiting Unidel Professor
at the University of Delaware.
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convex function has been introduced by Taladaj [8]; but that treatment
is a consequence of restricting the definition of quasi-starlikeness to the
case where a starlike function happens to be convex. The present devel-
opment makes explicit use of convexity and it follows that our results
do not, in general, hold for the starlike case.

2. A Loewner-type equation for #. We begin by taking a closer
look at the solutions of (1.2).

THEOREM 1. If f(2) is in A" and t > 0, then there is a unique solution

(2.1) w(z,t) =w(z; t; f) = 2+ ...

t+1

of (1.2) which is univalent and bounded by one in 4 and a member of F-
For each value of ¢, (1.1) defines a holomorphic function such that

Iz 1) o (2) )
' (?) f(2)

Because f(z) is in ¢, it follows that (2.2) has a positive real part

in A4; consequently, f(2, t) is univalent and close-to-convex in A (cf. [3]).

Now, if we treat ¢t as an independent variable, differentiation with
respect to 2z and ¢ gives

(2.3) Re {%1} — Re {1 —|—t(1+ z}c(g) )} >0

for zin 4 and ¢t > 0. It follows from the theorem of Bielecki and Lewan-
dowski [2] (see also Pommerenke [6]) that

(2.4) fl4, ] < f[4,t,] for 0 <, <1,

(2.2)

= 1+t(1+

and, in particular, that
(2.5) f(e) < f(z,t) for t>=0.

The last relation ensures the existence of a function given as in (2.1)
such that

(2.6) f(z) = flw(z,1),1)
for each non-negative ¢, with w(z, 0) = 2. The univalence of f(z, t) guar-

antees that w(z, t) = f(f(2), t) is likewise univalent.

THEOREM 2. w(z, t) is in F if and only if it satisfies the Loewner-type
equation

ow(z,t) —w(z, 1)
ot  1-+tP(w(z, 1)’

(2.7) w(z,0) =z,

Jor t =0 and P(z) in 2.
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Suppose w(z, t) is in #; then (1.2) assumes the form
(2.8) flw(z, 1) +tw(z, Of (w(z, 1)) = f(2)

with the boundary condition of (2.7) being satisfied. Differentiating (2.8)
with respect to t gives

ow(z,t) —w(z,t)

ot I (w(z,1))
) Fnte o]

and, because f(2) is in X", the expression in brackets may be written as
P(w(z, t)) for suitable P(z) in 2.

Conversely, suppose that (2.7) is satisfied with the given conditions.
It follows from a result of Kufarev [4] that w(z, ) is holomorphic and
univalent in 4. Now, since P (z) is in &, there is a function f(z) in " defined
by the condition P(z) = 1-2f"'(2)/f’(2) such that, for ¢ > 0,

@10) 228D [500(e, )41 fo(e, 1)+ to(e, 0F fole; )]+

(2.9)
14t [1+w(z t)

+w(z,8)f (w(z,1) = 0.

It follows from (2.9) that there is a regular function g(z), independent
of t, such that, for ¢ > 0, '

(2.11) f(’w(z’ t)) +tw(z, t)f,(w (2, t)) = g(2)

However, the boundary conditions of (2.7) imply that g(z) = f(2);
this gives (1.2), hence the theorem is proved.

To conclude this section, we make an observation about the rela-
tionship between classes " and &. If w(z, t) in & and f(2) in X are related
(2.7) or (1.2), then from (2.7) we see that

limw(z,t) =0
{—00

locally uniformly for z in 4 and, consequently, from (2.1) that

limtw(z, t) = f(2).
t—00
3. Extremal properties of #. In this section, we make use of the
differential equation of Theorem 2 to study some extremal problems
within the family #.
THEOREM 3. If w(z,1) i8 tn &F, then for z in A4

24 —v+Vr(v—4A)+ 44 2B+t —Vr(vr+4B)—4B

(3.1)
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where
(32) A =1lz|A+])"" and B =[|(1—]e))"!, ==1t+1,

and both bounds are sharp.
From Theorem 2 we get

0 1

(3.3) Elog]w(z,s)] = —Re{1+sp(w(z,s))}<0

Consequently, we observe that for each fixed 2z in 4, 2 # 0, |w(z, 8)}
is strictly decreasing in s. Hence, as s assumes values from 0 to r—1 > 0,
|w(z, )| assumes corresponding values from |2| to |w(2, t)] and, therefore,
s may be regarded as a function of |w]|.

Since P (z) appearing in (3.3) is in £, there is a function 7 (2) satisfying
Schwarz’s Lemma such that

A +n(w)
1—n(w)

Now, if we let w = w(z,s), then a straightforward computation
yields

(3.4) P(w) = for w in 4.

(3.5)

— |w] { 1 } 1+ |w
< Re < ’
— |w|+8(1+ |wl) 1+sP(w) 1+ jw|—s(1—|w)

which, in conjunction with (3.3), gives

1 1— |w] ds 1 14 |w|
3.6 < — <
GO ol Terat e fS T awl STl T wla—jw)

(3.6) is a linear differential inequality which may be solved by tech-
niques similar to those used for solving linear differential equations;
for example, it is possible to separate variables in the two left-most mem-
bers of (3.6) by multiplying the resulting inequality by

1— jw |
pfl ol @+ o)) 21l

Then, integrating over the interval [0, v —1], the resulting inequality
gives

(3.7) 1—1<(1+|w(z’t)l)2( 2l _lw(z 0)

wiz, )] \ 1+l  1+ho(z, 0]
In the calculations of (3.7), it is essential to keep in mind the fune-

tional relationship between s and |w|. Expression (3.7) is equivalent to
the left-hand side of (3.1). The upper bound given in (3.1) is obtained
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in a similar way. The lower bound is rendered sharp by the function
w(z,t) given by the equation
W -+ w? 2

(3.8) 1+w)? 14z

and the upper bound by the function defined by

3.9 TWw — w2 . ®
(3.9) 1—w)? 1—z

This completes the proof.
The left-hand side of (3.1) gives the following covering property:

COROLLARY 3.1. The tmage domain of A under each member of w(z, 1)
of F always includes the disk

1
(3.10) W< =241 —1;

(r—1)+V(r—1)2+1

this estimate is the best possible.
THEOREM 4. If w(z,t) is in F, then for z in A4

w(z,t)

(3.11) 'a,rg

1
<2 (1 — —) [F(sin~'|2], k) — F(sin~ jw(2, 8)], k)],
T
where
4
(3.12) F(L, k) = [(1—K'sin’e)™dw, k=[1—2¢7", v =1+1.
0
The bound in (3.11) follows by separating variables in (2.6) and
writing

Im{P(w)} dw| djw|
Re{l+sP(w)} |w]| = 8w, 9 ’

(3.13) dargw = —

with w = w(?, s) and P(z) in #. Now suppose 7n(w) is chosen as in (3.4).
Then

3 sIm{(l+n(w) (L —nw)}
Re{[1 —7(w)+8(1 49 (w))] (1 —n(w))}

Maximizing the right-hand side of (3.14) over all functions 7(2)
which satisfy Schwarz’s Lemma and making use of the relation |7(w(z, s))|
< |w(#, 8)] = |w|, we obtain

(3.14) S(w,8) =

2|w| 8 :
V1—|w|z V1—|w|2+2(1+ |w[?)s+(1+ w]?)s?

(3.15) 8w, )<
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Maximizing the last bound as a function of s over the interval [0, { —1],
we find that the maximum occurs at the right end point of the interval,
i.e., for 8 =t —1. This estimate for (3.15) together with (3.13) give

d|w|

(3.16) dargw < .
V(1 — [w]?) [12— (¢ —1)2|w]|?]

The theorem now follows by integration of (3.16).

We now turn to an examination of the coefficients of functions in
% and for this purpose we require a different form of the differential
equation (2.6).

Let w(z, 8) be a solution of equation (2.6) and let

(3.17) P(2,8) = w(w(z,8),8), 0<s<s,.
It follows from the boundary conditions that
(3.18) p(2,8) =2, ¢@(2,0) =w(z,s,y)),
and from (2.6) that
0p(z, 8) za¢(z,s) 1

. == 0 < < ~

(3.19) 08 0z 1+4sP(z)’ 8%
Assume now that
(3.20) ?(2,8) = D ay(s)e, =z in 4,
=1
(3.21) P(z) =1+ chz", zin A4,
k=1
and
1 1 ¢ s%c? 8C,

3.22 = — — 24...
B22) T3P@ ~ 1ts  (dte) ((1—!—3)3 (1+s)2)z +

1 > ,
=m+2bk(s)z" for 2z in 4.

k=1

Using representations (3.20), (3.21), and (3.22), comparison of co-
efficients in (3.19) gives the differential equations

(3.23) aj(s) = ;jj;

and

k-1
k |
A+ > b (o)

=1

(3.24) a(8) =
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for ¥ =2,3,... and 0 < s<s,. With these differential equations, we
are able to prove the following result:
THEOREM 5. If t > 1 and

1 - ,
(3.25) w(z, 1) = Tat kz_;y(t)z’”
18 in F, then
(t—1)2
(3.26) el <
and
_1\2

1o fr1zizs
(3.27) lys(®) <

2(t—1)° —1)?

(DY) G0 g

and both these bounds are sharp.
(For ease of calculation the values of ¢ were chosen in the range

t > 1, which differs slightly from (1.1).)
We begin the proof by rewriting (3.24) as

(3.28) a(8) = a,(8) + By (8),

1+s

and here we restrict the variable s to the interval [0, T'], where t —1 = T.
The boundary data give the conditions a;(T) = 0 and a,(0) = y,(T) for
k> 2 and a,(T) = 1. Then the solution of (3.28) is given by

R
(3.29) ax(s) = C(L+8f+(1+s)* [ (1 il(ss)),,

for 'C a constant.
Using the boundary data again gives

(3.30) vi(t) = A;(0) — A4, (T), k=2,3,...,
where
R, (s)
3.31 A =f LAMG )
( ) k(s) (1+8)k 8
And, in the case k¥ =1, (3.23) gives
1+s

(3.32) a,(s) =

’

t
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which  corresponds to »,(0) =1/t in (3.25). Then from (3.31), (3.29),
and (3.28), we have

—c,
(3.33) Ayls) = — f(l_::s)sds

1 1\2
]
t t

and, consequently,

e, T \
(3.34) ly2(T)| = , oY ( )

1+T)\1+T

which is equivalent to (3.26).
Similar calculations give

3 1 1-—-2t 1 1 1
(3.35) Ag(8) = —C—l[iuz— —ud+ (u——uz)] +02(Eu——u2),

t L2 3 2t 2

with the representation u = (1-48)~%, and this leads to

(t—1)3(t—3) (t—1)2(t42)
615 +0, 6t ’

(3.36) vs(t) = O}

We now maximize (3.36) using known bounds on the coefficients of
P(z) in (3.21).

For t > 3, y,(t) is a linear combination of the C? and C, with non-
negative coefficients, consequently,

2(t—1)3(t—3)  (t—1)2(1+2)
35 T 3t )

(3.37) s (?)] <

On the other hand, for 1 <t< 3, we have

_(t—1)2(t42) (3—t)(t—1) ,
= 61° Pr' t(t+2) OJ

The last expression may be mdximized by using the following result
due to Ziegler [9]:
If P(2) is in # and has representation (3.21), then

(3.39) |C, —uCl < 2max[1, |1 —2p]].

(3.38) »s(t)

Formula (3.39) is obtained by writing P(2) in form (3.4). and
then maximizing over the coefficients of #(z). The bound is rendered
sharp by P(z) = (1+22)/(1 —22)if |1 —2u| < 1and by P(z) = (1+2)/(1 —%)
if [1—2u|>1.

In the case under consideration u = [(3 —¢) (1 —1)]/[t(t+2)] and it
follows that 1 <t <3, 0 <1—2u < 1. Therefore the corresponding bound
in (3.39) is equal to 2. This, in (3.38), together with (3.37) gives the bounds
of Theorem 5.
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The bounds of the theorem are sharp for all admissible ¢ and w(z, ?)
in # chosen as solutions of (1.2) for appropriate f(z) in . If f(2) = 2/(1 —=2),
then the corresponding values of w(z,t) give the sharp bounds for y,(t)
in (3.26) and also for y4(t) in (3.27) when t > 3. Letting

1+z)-

1
1) = 5 log( 1=

we get the bound on y,(t) in (3.27) for 1 <t < 3.
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