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1. It was proved in [4] that in an algebraic number field with the
class-number h >1 almost all integers have non-unique factorization
into irreducible factors, and if the field in question is normal then almost
all rational integers have non-unique factorization.

L. Carlitz proved in [1] that in fields with A > 2 there are integers
which have factorizations into irreducible factors with different lengths.
(The length of a factorization is the number of irreducible non-unit
factors occuring in it.) In [4] it was proved that almost all integers have
this property and that in the case of a quadratic number field almost
all rational integers share this property as well.

In this note* we prove the last result for all normal extensions of
the rationals with the class-number at least 3.

2. Let X be a normal algebraic number field of degree N with
Galois group G and class-group H # C,. By F we shall denote the unit
element of H and h will be the class-number of . Evidently every
element of G induces an automorphism of H. For every XeH let O(X)
be the orbit of X under G, i.e. O(X) = {8X: 8eG}. We shall write the
orbits in the form O = (X,,..., Xy), where X; = s;(X,) and s,,..., 8y
is an ordering of G which usually will be arbitrary but fixed independently
of the choice of X,. Let W be the number of different orbits # O(E),
m(X) the order of X in H and s(X) the number of elements of G which
leave X invariant. Obviously m(X) and s(X) depend only on the orbit
to which X belongs, so that for any orbit O, 8(0) and m(0) are well-
defined. Let m* be the least common multiple of the numbers m(X)

(XeH), M = max m(X), A — the number of orbits O # O(FE) such that
XeH
X 0 implies X '¢0, and B = ) m(0), where the sum is extended over

* During the preparation of this paper the author held a British Council Scholar-
ship at the University College, London.
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50 W. NARKIEWICZ

all such orbits. Let ¢, = 2k/N if N divides 2k and ¢, = [2k/N]+1 if not.
(Here % is an arbitrary natural number.) Let C = ' m(0) and finally let

O+#0(E)
1
V=3 Z $(0)~'+ 2 $(0)~".
0-0(X)~0(X~1) 0=0(X)=0(X~1)
m(0)#2

We shall say that a rational prime p belongs to the orbit O if
P =9;...pn, where p;eX; and O = (X,, ..., Xy). For such a prime we
shall write p~0. (This definition applies only to primes which are norms
of a prime ideal of the first degree, but they are the only ones which
are important for us.)

By a factorization of an orbit 0 = (X,, ..., Xy) we shall understand
any decomposition

E == (Xi(ll)“.xiscll))...(Xigz)...Xi'isz)’

where i{”, ..., is a permutation of the set {1,2,..., N} such that
for j =1,2,...,2 we have

XIU) PP X"’U) == .E
1 k;
and where the equality

X"y) ces X’i(i) = E
1 ty

for some {t,,...,%} c {1,..., k;} with all ¢;-8 distinet implies {t,, ..., %}
= {1, ..., &}

We shall call 2 the length of the factorization. Evidently every factor-
ization of an orbit induces a factorization (with the same length) of any
prime belonging to this orbit, and conversely.

Let K be the number of orbits # O(F) which have a factorization
of the length different from N /2 (if N is odd, then K = W) and let
Z = ) $(0)~' where the sum is extended over all such orbits.

By f(n) we denote the number of factorizations of the rational
positive integer n, which have different lengths. Finally, for any set of
rational primes P we shall denote by £2p(n) the number of primes in P,
which divide n, each counted according to its multiplicity.

We can now state our result:

THEOREM. Let ) be a mormal algebraic number field with the class-
number h > 2. Let F;(x) be the number of rational positive integers mot
greater than x, with at most k factorizations of different lengths. Then F(x)
= o(x).

More precisely Fy(x) = O_(m(loglogw)bk(logm)‘“k), where a; and by
are defined as follows:
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i) If (h,2N)=1, then a; = (h—1)/hN, b, = min(2Ck— W,
E(W—-1)m*+2ME—W),

(i) of (h,2N)>1, but H #Cy3xCy3%X...XCy, then ay = V[h, by
=4HB—A+(W—-4)(k—1)/2,

(ii) ¢f H = C;X...xC,, and K > 0, then ay = Z|h, b, = K(2k—1),

(iv) f H =0,%X...XCy, and K =0, then a, = T[h, where T is
defined in a rather complicated way by (4), and b, = W(k—1).

(It should be remarked that a, does not depend on k at all, and so
in the case of a quadratic field we get here an improvement of the result
obtained in [4]).

The proof is based on the following result of H. Delange:

(%) Let P be a set of rational primes such that for Res > 1

D p~* = Alog(1/(s—1)) +4(s),
PP

where A i8 positive and g(8) i3 a function regular for Res > 1.
Then

Z 1 = Cz(loglogx)*(logz)~*+ o(z(loglogx)*(logz) %)
K=

where C is some positive constant depending on k and the set P (see [2],
th. 36).

Moreover, we shall use the following well-known result:

(=*) If /0 18 any orbit, then for Res > 1 we have

27 h(O)log(l/(s 1)+g(s)

with some g(s) regular for Res > 1.
Let us remark that with the use of () one can improve the expo-
nents in the theorem I in [4], which will take thus the following form:
Let K be a finite algebraic normal extension of the rationals with the
classnumber % # 1. Denote by S;(z) the number of rational positive
integers not greater than x, having at most & essentially different fac-
torizations in K. Then

S(z) < z(logloga)"—N*C—W)(jogg)—(A-NAN
where r is the least integer greater than }(1 +V8k—T).
In the case of the field Q(l/j) and ¥ =1 we obtain
(1) 8, () < x(loglogz)(logz)~"/.
This improves a result of Fogels, who proved in [3]
*#(loga)~

1/5

8, (z) < z(loglogx)
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It is easy to see that (1) cannot be improved, as every rational

integer having in Q(l/—5) at most one rational prime divisor which is
a product of two non-principal prime ideals must have a unique
factorization, and the number of such positive rational integers which
are not greater than « is by (*) and (*+) > x(loglogz)(logz)~/*.

2. LEMMA 1. If (h, 2N) = 1, and f(n) < k, then Qp(n) < min(2Ck—W,
k(W —1)m*+2Mk—W), where P is the set of all rational primes which
are morms of monm-principal prime ideals.

Proof. Let X, YeH (X, Y # E, but we do not assume X # Y).
Let (X,,..., Xn) = O, be the orbit of X and (Y,,..., Yy) = O, the
orbit of Y. Let m(X) = m,, m(Y) = m,, [m,, m;] = R. Consider now
arbitrary factorizations of the orbits O, and O,:

XXy =X 0 Xy =... = X;,_ ... Xy = E,
Y.V =Y n..Yy=...=Y .. Yy=F

Y

of lengths s and 8’ respectively.
If now p,~0,, ¢o~0, (r =1,2, ..., kR), then since
N

N
pe=[]o  "eX), g =[] (dT)

i=1 t=1

we have, for n = p,q,...Preqrr, the following factorizations:
wR
n = n p(u) (/")) $8 Yy %))X
u=1
wR
x [eat...qf)...(¢h_,-..a%) x
p=1

X [ [ R0, prRrm) L (pFE-mt D p(F9) x

~

|
]

1

QY.L g T) . (.. )

'.;lz

X

i
I

1

for w =0,1,2,...,k The length of such a factorization is evidently
equal to wR((s+8)—N(mi'+mz"))+RNk(mi* 4+ m3?).

If s48 = N(m{'+m;?'), then (s48')m,my = N (m,+ m,), and so m,
divides Nm, and m, divides Nm,. As m, divides 2 and (h, N) =1, it
follows that m, = m, and so (8+8')m, = 2N, whence m, divides 2N
and finally m, must be equal to 1. But this is impossible, as X # E.
Then 8+ 8’ # N(m;'+m;"') and so all the factorizations (2) have different
lengths. Hence f(n) > 1+ k.
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Consequently, if f(m) < k for some m, then for every orbit O # O(E),
m one can have at most 2km(0)—1 prime factors p~O and, moreover,
there is at most one orbit O # O(F) such that m has at least km* prime
factors belonging to it. The lemma follows now easily.

To prove the theorem in the case (i) let us observe that the Dirichlet
density of the set of all rational primes which are norms of non-principal
prime ideals is by (**) equal to (h—1)/hN. The application of (*) and
lemma 1 gives us the desired result. .

3. Now let us turn to the case (ii). Thus we assume that H # (,X

..X Cy. (In what follows, the case (h,2N) = 1 is not formally excluded,
but obviously the result obtained in this case is much weaker than the
foregoing.)

LEMMA 2. If f(n) < k, and X e H is such that X° ;é E,0(X) #0(X7),
then n = py...p;qs... 45" Q, where pi~0(X), g;~0(X "), min(j, j') < k—1,
and @ has no prime divisors belonging to either of the orbits 0(X), O(X ‘1).

Proof. Let O0(X) = (X4,..., Xn), 0(X™') = (¥Y,,..., Yy) Where Y;
=X;! (i=1,2,..., N). Suppose that the orbits are ordered in such
& way that ¥ =X,..X; =...=X;_,...Xy is a factorization of
O(X). Then obviously ¥ = Y,... Y; =...=Y%,_,...Yy i8 a factori-
zation of O(X~'). If now

N N
pi=[[¥P~0(X), ¢ =]]af)~0X"
f=1 =1
(p}i)‘Xh qgi)‘yﬂj =1,...,N),

then the number # = p,...pxq,...qx Will have the following factoriza-
tions

r 8~1
n = ” ”(p;?-i-l- ;':ll)(qt+l q,m) ” n(py) q')
=1 =0 f=lyr i=1

forr =0,1,..., k. The length of such a factorization is equal to r (28 — N )+
+kN, and so f(n) will be at least 1+%, provided 28 # N. But observe
that the equality j,,,—j. = 1 for some ¢ would imply X; = E, and
Jiymi—je=2 would imply X; = X, +1= Y. In Dboth cases
a contradiction, as X; # F and the orbits O (X) and O(X ') are disjoint.
Hence ji.,—ji =3 holds for all ¢. Consequently N = (N —j,_;)+
4+ (Js—1—Js—2)+...+(js—Jj,) =38, and so N #2s, and the lemma
follows.

LEMMA 3. If f(n) <k, and XeH is such that X* # E and O(X)
= 0(X™"), then n = p,...p;Q, where p;~0(X), @ has no prime divisors
belonging to the orbit O(X), and j < t,m(X)—1.
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Proof. In our case Y ¢O(X) implies Y~ 'eO(X), and so the orbit
O(X) has the form (X,, Xi',..., Xy, Xp). If now
N2 Nj2
pi=[[vP[]d'~0(X) 9P eX;, ¢ X7,
J=1
then the number n = p,...pnx) has the following factorizations:
Ni2—r m(X) N/2—r m(X)

o= [T ovaoroma [T (T ve) T 1] (a2
=l i=1 i=1 ti=1

for r =0,1,2,..., N/2. The length of such a factorization is equal to
r(m(X)—2)+N, and a8 m(X) # 2, it follows that f(n) > 1+N/2.

If now the number m has the form m = p,...pymzx) (Pi~0(X)),
then for every j = 0,1, ..., #{;—1 there exist factorizations of the number
Pimx)+1++-Py+ymx) With the lengths 7;(m(X)—2)+4N, where 7; is
any number from the interval [0, N/2]. By putting them together, we
obtain a factorization of m with the length equal to (r,+.. Ty 1) X
x(m(X)—2)+tkN As there are t;N/2+1 different numbers here, it
follows that f(m) > Nt,/2+1 > k+1, and the lemma easily follows.

Now we can prove our theorem in the case (ii). Let 0; = O(X;) be
all orbits # O(FE) such that O(X;) # O(X;'). Here ¢ =1,2,..., W—A.
We can assume that they are numbered in such way that O(X,. ;)
=0(X') fort=1,2,...,4’, where A’ = (W—A4)/2.

Now let
Po= U {p:p~0(X)}, P{={p:ip~0p,
O(X)=0(X"1)
X2+E

PiD = {p:p~0i 4} (j=1,2,...,4").
From lemmas 2 and 3 it follows that if f(n) <k, then
Qp, (1) < > Gm(0)—1) < > (am(0)—1) <t,B—A4

- ~1 O#0O(E
O(X);eO(E'),O(X) o(x-1) O(x)#o((x)_l)
and, moreover, min (2 (+1)(”")7 l)(n)) <k—1for j=1,...,4"
For every sequence ¢ = {el, .y 64} (6; = +1) let us put
AI
PO = | P,
j=1

For every n with f(n) <k there is such a sequence ¢ with £, (n)
< A'(k—1) and so if we finally define P® = P® _ P, we will have

Q5(n) < A’ (k—1)+ 4 B—A.
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Hence

(3) PRED) > 1.

n< n<T
f(m)<k 5(e) W<t B—A+4'(k—1)

Since for Res > 1, we have by (#*)
A'

D=5 e 0n)1oe, 7 +a00)

peP(€) =1

with some g(s) regular for Res > 1; we have for Res > 1

D=3z X o+ Y o) a0

<p(€) 0=0(z) O(X)=0(X—!
P £0(@@—1) “’2(0)‘#2 )
® 1o +,(9)
T h gs—l 9

with some g¢,(8) regular for Res > 1, and consequently by (3) and (%)
the theorem follows in the case (ii).

4. Now let us consider the case (iii), i. e. we assume that H =
Cyx...xCy #C,and K # 0. Let O = (X,, ..., Xy) be one of the orbits
which have a factorization of the length different from N /2. Let
pi = p...pP~0 (i =1, 2;peX;). The number n = p,p, has a facto-
rization of the length different from N induced by the factorization of
0, the existence of which we assumed, and moreover it has a factoriza-
tion of the length N:

N
n =[] oPo).
7=1

In the same way as in lemma 3 we infer that the number m = p,... g
(pi~0, ©=1,2,...,2k) has at least k+1 factorizations of different
lengths. Hence from f(n) <%k it will follow that » has at most
2k—1 prime divisors belonging to the orbit O, and we get Qp(n)
< K(2k—1), where

P = LO) {p: p~0}.

and the sum is extended over all such orbits which have a factorization
of the length different from N /2.
As for Res > 1 we have

k

. (1 B 1 zZ. 1
DX = (5 D007 1og = +9t6) = F10g =5 +400

=1
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with a suitable function g(s) regular for Res > 1, we can use (*) and the
theorem in the case (iii) follows immediately.

5. Finally consider the case H = (U,X...X(C, #C, and K = 0.
Now every orbit # O(E) has factorizations only of the length N /2, i. e.
every irreducible factor of every factorization of an orbit must have
the length 2. There exist at least two different orbits, because otherwise
the only existing orbit # O(FE), say (X,,..., Xx) (here the X;-s are not
necessarily distinct, but as H = C, we can arrange them in such way
that X; # X,, and X; = X, X,), would have a factorization of a length
# N[2. Indeed, X,X,X,; = E, and obviously X, X,X, is irreducible,
so if we factorize X,...Xy in an arbitrary way, say (X,...X;)...
(X,-,“...XN), then the factorization (X1X2X3)(X4...X,-l)...(X,-%l...XN)
of the orbit (X,, ..., Xy) will have the length < N /2.

Let now O’ = (X,,...,Xy), 0" = (Y,,..., Yn) be two different
orbits #0O(E), and let 0 = (X, Y,,..., Xy Yy). If

N
p= pi~0' (Pie Xy),
=]
N . N
¢=[]a~0" (%e¥) and r=[[t~0 (neXiY)),
t=1 i=1

then the number pgr will have a factorization of the length 3N /2
induced by the factorizations of the orbits and moreover a factorization

of the length N:
N
pgr = n (Pigivs).

i=1
Similarly, as in lemma 3, we infer that if p;~0’, ¢;~0" and 7r;,~O0
(¢=1,2,...,%k), then f(p,q.71...Pxqx"x) = 1+%, and so, if we define
P ={p:p~0'}, P" ={p: p~0"} and P = {p: p~0}, we see that
f(n) < k implies
min(Q2p.(n), 2p.(n), 2p(n)) < k—1.

Let now O, be an arbitrary orbit +#O(FE) and let O,, ..., Oy be the
remaining orbits #O(E). Let us define P; = {p:p~0;} (1 =1,2,
...y W). The result obtained above tells us that there exists a function g:
(2,...,W)—>(1,2,..., W) such that, for every i =2,..., W, f(n) <k
implies

min(.Qpl(n), Qp,(n), Qpﬁ(i)(n)) <k-1.
For every sequence ¢ = (e, ..., ep), ¢; = +1, let

PO = U P;o U Pp(i)-
2<i<W 2<iSW
8.i=+l ciu—l
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To every n with f(n) <k and £p (n) >k there corresponds such
a sequence defined by
1 if Qp(n) <k-1,
—1 if Qpi(’”/) > k—l, Qpﬂ(i)(’n) <k

Evidently, for this sequence (), 2,.)(n) < (W —1)(k—1).
Now for Res > 1 we have by (=)

h(zsw Ly Z 5 (Ope) ") Tog = +9(6)

pcP(e) =1
By

with a suitable g(s) regular for Res > 1. (Here )™ indicates that if for
some i-8, say for 4,,...,1%,, we have f(i;) = ... = f(i), &;, = ... = ¢,

€; =

= —1, eﬂ(,j) =-1(j=1,...,v), then we count the corresponding
8(05(9)) only once in the sum.)
Now let
T, = Ty(0)) = n(ni)n{ D 8(0)7"+ Z* 3(0pe) ™"}
e ]
eill ei=—l
°p(i)=—1

By () it follows now that
2 1 < z(loglogz)™ ~"*=N(loga) =1/,

/(f?<k
Dp n)>k

If we repeat now the same procedure with O; instead O,, we will have
Z 1 < @ (loglog )™ ~YE-Y(1ogq)-Ti/"

I(n)<k
2p,(n)>k

where T; is defined analogously to 7', (take O; instead O,). If now

(4) T = min(T,, ..., Tw),
then
2 1 < z(loglogz)®” -"¢-D(logg)-T* (i =1,..., W).
n<T
I(m<k
2p;(n)>k
But
N
@<} Y 1+ Y 1,
=1 n<T n<e
f(ﬂ)<’° fin)<k
P;(n)>k 9P1(n)<k 1
Pz(n)gk_

9P,,(n)<k—
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and the second sum is at most equal to

N
2 1 < x(loglogz)”*-D(logz)~*-"*N  (where P = | P
apm<le-1
by (=) and ().
As (h—1)/hN > T/h, it results

F.(x) < z(loglogx)” *—Y(logx)~T/*

and so the theorem is proved in the last case.
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