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ON PROJECTIVENESS IN H-CLOSED SPACES

BY

A. BLASZCZYK (KATOWICE)

This paper is a continuation of [6] and [6], where we have studied
extremally disconnected resolutions for an arbitrary 7,-space. Our main
object here is the projectiveness of extremally disconnected spaces.

Let € be a category and & a class of morphisms of ¢. An object P
of ¥ is said to be «/-projective provided, for each f: ¥ — X from « and
for each g: P — X from ¥, there exists ¢: P — Y in € such that the diagram

P
o
® VIR
XY

commutes. Only the case where morphisms of «f are epimorphisms is
non-trivial. If & is the class of all epimorphisms of ¢, then «/-projectiveness
will be abbreviated to projectiveness.

Gleason [11] proved that, in the category of compact spaces and
continuous maps, projective objects coincide with extremally disconnected
spaces. This result was confirmed also by Rainwater [20] and Hager [12].
In the non-compact case for the class o there is usually taken the
class of all perfect onto maps. There are many results in this direction,
e.g., Flachsmeyer [10], Ponomarev [19], Strauss [21] in regular case,
Mioduszewski and Rudolf [17] and [18] in completely regular case, and
Banaschewski [1] and [2] in Hausdorff case. A categorial description
of this situation was given by Banaschewski [2]. Recently, Dyckhoff [7]
has given another categorial approach to projectiveness which extends
the results of [2].

It will be shown in Theorem 1 of Section 1 that, in the category of
all T-spaces and continuous maps, extremally disconnected spaces coin-
cide with of-projective spaces, where & is the class of all perfect separated
maps. This is a simultaneous extension of the results of Dyckhoff [7]
and of Banaschewski [2].
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We shall also discuss the projectiveness in the category of H-closed
spaces, which case does fall neither under the Banaschewski nor under the
Dyckhoff schemes. It will be shown that here «/-projective spaces (.« being
the class of all perfect onto maps) coincide with extremally disconnected
spaces. The greatest class &/’ such that all extremally disconnected spaces
remain «f’'-projective will be distinguished.

We shall show that «/-projective objects, & being the class of all
onto maps, in the category of H-closed spaces must be the Katétov
extensions of discrete spaces, and that exactly those spaces are «/-projective
if we restrict the category to compact-like spaces.

A question of Mioduszewski and Rudolf [16] concerning the unique-
ness of lifting maps by the Iliadis resolution is answered.

All maps are assumed to be continuous. Topological notions not
defined here are as in Engelking [8].

1. Preliminary results. We recall some notions which can be found
in [6]. A map f: X — Y is called r.0.-minimal (r,0. is the abbreviation
of regqularly open) if it is onto and the family

{f7(U)n@: U is open in Y and @ is regularly open in X}

is a base in X; it is called ¢rreducible if it is onto and cl f(F') # Y for
each regularly closed (shortly, r.c.) subset F, F # X. It is known [3]
that if f is irreducible and r.o.-minimal, then cl f(#) % Y for an arbitrary
closed F, F + X. An extremally disconnected resolution (shortly, e.d. reso-
lution) is an irreducible r.o.-minimal map of an extremally disconnected
(shortly, e.d.) space onto a given one. In [6] we have proved that, for
each T,-space X, there exists among its e.d. resolutions the greatest one,
namely the Iliadis e.d. resolution a: aX — X, and that a is a perfect
separated map (a map is said to be separated if distinct points with the
same image have disjoint neighbourhoods).

Let Top, be the category of all topological Ty-spaces and their con-
tinuous maps.

THEOREM 1. Let € be a full subcategory of Top, such that aX ¢ € whenever
Xe¥, and let o be a class of all perfect, separated, onto maps of €. For
each P from € the following are equivalent:

(I) P is e.d.;
(II) P is sf-projective in €;

(III) each map f: P -~ X, Xe%, can be lifted over aX, i.c., there
exists a map ¢: P — aX such that f = aoe.

Proof. 1. The implication (I) = (II) follows by a simple modifi-
cation of the Gleason proof, where it is shown that, in the compact case,
e.d. spaces are projective.
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2. The implication (II) = (III) follows by the remark that, by [6],'
the Iliadis resolution is perfect and separated.

3. (IIT) = (I). In view of (III), also the identity ¢: P — P can be lifted
over aP,i.e., there exists a map ¢: P — aX such that i = ao¢. Clearly,
¢ is an embedding. Since a(cltp(P)) = P and a is irreducible and r.0.-mini-
mal, ¢(P) is dense in aP. Thus P is e.d.

Let HCI be afull subcategory of Top, consisting of all H-closed spaces.

THEOREM 2. An H-closed space is e.d. iff itis of/-projective in HCI,
where o is the class of all perfect onto maps from HCI.

Proof. Clearly, maps from Hausdorff spaces are separated. It is
known that irreducible maps are skeletal (see [16]). In [4] it was shown
that preimages of H-closed spaces under perfect skeletal maps are H-closed.
The conclusion follows by Theorem 1.

Note. The last assertion cannot be obtained by using the categorial
scheme given by Banaschewski [2], since HCI| is not closed with respect
to the “pullback diagrams”. Since preimages of locally H-closed spaces
under skeletal perfect maps are locally H-closed (see [4]), H-closed spaces
in Theorem 2 can be replaced by locally H-closed ones.

It was shown by Henriksen and Jerison [13] that, in the compact
case, the lifting map from Theorem 1 is uniquely determined iff

(2) Int f~*(c1U) = Intcl f~'(0)

for each r.o. subset U of X. Maps satisfying (2) are called in [16] the
Henriksen-Jerison maps (shortly, HJ-maps). In [16] Mioduszewski and
Rudolf have shown that each HJ-map f: ¥ — X, where X is Hausdorff
and Y is e.d. Hausdorff, lifts over aX and such a lifting is unique. They
asked if the assumption that f is an HJ-map is essential. The answer is
positive: ‘

THEOREM 3. A map f: Y — X, where X and Y are from Top, and Y is
e.d., admits a unique lifting over oX iff it is an HdJ-map.

. Proof. 1. The proof of the necessity does not differ, in virtue of
Theorem 1, from that for the compact case.

2. To.show the converse let us suppose that there exist two different
maps ¢, h: ¥ - X such that aog = aoh. There exists a point ze¢ ¥ such
that h(x) # g(x). Since a is separated (cf. [6], Lemma 10), there exists
a closed-open set @, @ c aX, which contains exactly one from the points
h(x) and g(z). Since a is irreducible, @ = cla~*(U) for a certain r.o. set
U, U c X (see [16], p. 27). If g(x)e cla™'(U), then

we g~ (cla™(U)) = clIntg~*(cla™'(T)) < clInt f~'(cl T).
Thus, f being an HJ-map, xecl f~!(IntelU) = cl f~(T).
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On the other hand, h(X)¢cle '(U). Then «¢h~*(cla=*(U)) and,
finally,
xd elh~Ya ' (T)) = el f71(U);
a contradiction.

2. Projectiveness for H-closed spaces. In the present section we shall
be concerned with «/-projective objects in the category HCI for o« being
a class of epimorphisms which are not necessarily perfect.

Let P (s, €) be the class of all o/-projective objects in the category €.
Theorem 2 shows that if .7 is the class of all perfect onto maps of HCI,
then P (s, HCI) is equal to the class of all e.d. H-closed spaces. Clearly,
if #c o, then P(A,¥) =« P(#,¥). In [16] it was shown that no e.d.
dense in itself H-closed space belongs to P(Epi, HCI), where Epi denotes
the class of all onto maps of HCIl. Our purpose is to find the greatest
class o/’ of epimorphisms for which the class Ed of all e.d. H-closed spaces
equals P(=’, HCI). v

THEOREM 4. The class ' of epimorphisms of HC|, consisting of maps
which admit a restriction to an H-closed subspace being perfect and onfto,
is the greatest class for which P(s«', HCI) = Ed.

This assertion can be deduced from the more general

THEOREM 4'. Let € be a full subcategory of Top, such that aX e ¢ when-
ever X e ¥, a being the Iliadis resolution, and, for each f: X — Y from ¥,
the map f: X — f(X) belongs to €. Let o’ be the class of all separated onto
maps from € which admit a restriction being a perfect onto map from €.
Then &' is the greatest class of separated onto maps of € such that P(', €)
equals the class of all e.d. spaces from €.

Proof. It is easy to see that P(«’, ¥) = P(«, €), o being the class
of all perfect separated onto maps of €. Thus, by Theorem 1, P(«’, €¥)
equals the class of all e.d. spaces of €. Let # be a class of separated onto
maps of € such that P(#, ¢) = P(«, ¢). We show that # c /. Indeed,
if f: ¥ — X belongs to &, then there exists a map ¢: aX — Y from €
such that a = fop, aX being #-projective. Since a is perfect and onto,
the map

flp(eX): ¢p(aX) > ¥
is perfect and onto (see Engelking [9]). But flp(aX)e ¥, in view of
¢(aX)e €. Thus fe o', which completes the proof.

Let 7Z be the Katétov H-closed extension of Z. It is known that
if Z is e.d., then so is ¢Z. )

THEOREM 5. Projective objects in HCI are either finite or equal to D,
D being a discrete space.

Proof. Let P be projective in HCI. Since aP is H-closed, there exists
& map 8: P — aP such that aos =4, ¢ being an identity on P. Clearly,
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8 is an embedding. But s(P) is closed in aP and a(s(P)) = P. Thus aP =P
topologically, since a: aP — P is irreducible and r.o.-minimal. Therefore
P is e.d. B

The space P, being e.d. and Hausdorff, is Urysohn. Hence the topo-
logy on P generated by the family of all r.o. sets is compact, i. e., there
exists a contraction ¢: P — Y, where Y is compact. Denote by dY the
set Y with the discrete topology, and by d: dY — Y the natural contraction.

Since Y is regular, there exists an extension d of d onto the Katétov
extension tdY of dY. But P is projective in HCI|, and so there exists a map
¢: P — tdY such that the diagram

rdY\

al\

Y
Y<—0u P

commutes. Let X be the set of all accumulation points of P. Since ¢ is
an embedding, we have ¢(X) < 7dY\dY, and since the topology in
td Y \dY is discrete, X is a discrete subspace of P. Thus X is nowhere dense
in P. This means that P is an H-closed extension of a discrete space D
= P\X whenever P is not finite.

Since 7D is the greatest H-closed extension of D, there exists a map
k: ©D — P being an identity on D. But P is projective; hence there exists
a map l: P — D such that kol is an identity on P. Clearly, I|D is an
identity on D. Thus P = tD; 7D being the greatest H-closed extension
of D. This completes the proof.

A subset F of a space X is said to be regularly embedded (shortly,
r.ebd.) if, for each x¢ F, there exists an open neighbourhood U of x such
that clUNF = @. A space is said to be compact-like if it is H-closed
and Urysohn.

Let us note the following properties of r.ebd. subsets of a given
space:

LEMMA 1. An intersection of a family of r.ebd. subsets is r.ebd.

LEMMA 2. A subset of a compact-like space is compact-like iff it is r.ebd.

LeMMA 3. If @ map f: X — Y is onlo, X is compact-like and Y is
Hausdorff, then there exists a subset F of X which is compact-like and such
that f| F is irreducible.

Proof. Let us consider a chain L of r.ebd. subsets of X which are
carried onto whole Y. By Lemma 1, () Lisr.ebd. in X.Since Y is Hausdorff,
counterimages of points under f are r.ebd. in X. Hence, by Lemmas 1
and 3, the family {ANf~'(2): AL}, 2 being a distinguished point of ¥, is
a chain of H-closed subsets and, by a theorem of Katétov [15], it has
a non-empty intersection. Thus f((\L) = Y. Therefore, by the Kura-
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towski-Zorn Lemma, in X tiere exists & minimal (in the sense of inclusion)
r.ebd. subset F' of X for which f(F) = Y.

By Lemma 2, it suffices to show that f|F is irreducible. Suppose
that there exists an r.c. subset F of F such that f(F) = Y. Since F is
H-closed, so is E. Thus, by Lemma 2, ¥ is r.ebd. in X. Hence £ = F,
which completes the proof.

LeMMA 4. Each irreducible map of an Urysohn space onto an e.d. space
18 omne-to-ome.

The proof of this lemma can be obtained by a simple modification
of the proof of Theorem 2 from [3].

LeMMA 5. If in the pullback diagram

Z<—1T

Lo
X< — Y
spaces Y and Z are compact-like and X i8 Urysohn, then T is compact-lik e
Proof. To prove this it suffices to show, by Lemma 2, that

T ={(y,2)e Y XZ: f(y) = g(2)}

isr.ebd. in ¥ xZ, Y xZ being compact-like. If (y, z)¢ T, then f(y) # g(2).
Hence, X being Urysohn, there exist open sets U and V containing f(x)
and ¢(z), respectively, such that clUneclV = @. It is easy to check that
W = f~Y(U) xg~'(V) is an open neighbourhood of (¥, 2), and TNnclW = 3.

Let CL be a category of all compact-like spaces and continuous
maps. We get

THEOREM 6. The Katétov extensions of discrete spaces are projective in CL.

Proof. Let ¢g: vD - X, and let f: Y - X be a map onto, X and
Y being compact-like. Clearly, tD is compact-like as an H-closed e.d.
space. Let us consider the pullback diagram

rD;é—T

o| l

X<T—Y

By Lemma 5, T' is compact-like. Since f is onto, so is . Then, by Lem-
ma 3, there exists a compact-like space Z, Z <= T, such that ¢|Z is irre-
ducible. By Lemma 4, ¢|Z is one-to-one. Since ¢|Z is irreducible, isolated
points of Z are carried onto D. Let us note that (¢|Z)~'(D) is dense in Z.
Indeed, cl(¢|Z)~!(D), being r.c. in Z, is carried onto zD. Since ¢|Z is
irreducible, ¢l(¢|Z)~'(D) = Z. Thus Z is an H-closed extension of D and
is not less than zD. But since D is the greatest one, ¢|Z is a homeo-
morphism. ' '
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It is easy to see that ¢ = foyo(p|Z)~'. Therefore, D is projective
in CL.

THEOREM 7. Projective objects in CL are exactly those which are either
finite spaces or Katétov extensions of discrele spaces.

Proof. Clearly, finite spaces are projective in CL. By Theorem 6,
D for D discrete are also projective in CL. The inverse implication was
shown, in fact, in the proof of Theorem 5.
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