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1. Introduction. Let X be a non-empty set and let &/ be a family of
subsets of X. By o(2) we denote the least og-algebra containing /. A o-
algebra ¥ is called countably generated (c.g.) if there is a countable family .o/
such that ¥ = o(./). A countably generated c-algebra of subsets of X is
called separable if it contains all singletons {x} for xe X. If ¢ is a o-algebra
on X and Y < X, then 4(Y)={ANnY: Ac¥}.

B. V. Rao in [5] and K. P. S. Bhaskara Rao and B. V. Rao in [1]
present several cxamples of separable o-algebras whose intersection is not c.g.
As they point out all of these examples are such that the intersection does
not contain a separable o-algebra. In [5] B. V. Rao raised the question
(P 687) whether there are separable g-algebras such that their intersection is
not c.g. but contains a separable g-algebra. In this paper we give a positive
answer to this question.

It is worth mentioning that recently Grzegorek ([3], Theorem 0) proved
under the Continuum Hypothesis the following strengthening of results of B.
V. Rao [5]: If X is a set of cardinality 2, then there are separable o-algebras
% and 2 on X such that for every uncountable Y — X and every injection
f: X =5 X the o-algebra 4(Y)n(f(2) NY) does not contain a separable
o-algebra.

We precede our construction by two easy lemmas.

LEMMA 1. If € is a g-algebra of subsets of X and Y — X, then
o(¢u{Y}) ={C,nY)U(C,nY): Cy, Cre¥}.

For a cardinal number x we denote by cf(x) the cofinality of x.
LEMMA 2. Let € = |) €,, where ¥, are c-algebras such that a < f < x

a<x

implies €, — 6. If cf(x) > w and for every a < x there exists Ce €\%,, then
€ is a c-algebra which is not cg.
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Remark. If € is as in Lemma 2 and cf(x) = w, then it follows by the
Theorem of Broughton and Huff [2] that ¥ is not a o-algebra.

2. Example. By I we denote the interval [0, 1]. Let # be a g-algebra of
all Borel subsets of a square I%. A standard transfinite induction establishes
the existence of totally imperfect sets E, F I such that ] = EUF and
EnF = Q. We define sets

P=ExEUFxF and R=IxE

and o-algebras

Ay =c(@BU{P}) and o, =c(BUI{R).
We shall show that &/, and .o/, have the desired properties.
ProPOSITION 1. The c-algebras o, o/, and B are separable and
BcAd NnA,.
The proof is clear.

PROPOSITION 2. The o-algebra s/, N of, is not countably generated.
If AcI? and xel, then A, = {y: (x, y)e 4}. Put

F={Acl® [{xel: |4] > o}| < 0}.

Notice that # is a o-ideal.
LemMMa 3. If De oA, N of,, then there exists Be # such that the sym-
metric difference DAB is in #.

Proof. Let De o/, nof,. By Lemma 1 there are B,, B,, C,, C,e #
such that

(1) D=(B;,NnR)U(B;"R)=(C;"nP)U(C; N F).
CLam. B;ACje # for i,j=1, 2.

Consider the case i =j = 1. For xeE, (B,), nE =(C,), N E since by (1)
we have

BiNnExXxE=C,nEXE.
Hence
(2) (ByACy), NE =(B);A(C)) NE =0.
By the Mazurkiewicz—Sierpinski Theorem [4] the set
{xel: |(BACy)] > w}

is analytic and, by (2),‘ disjoint with E, so it must be countable. The proof of
the Claim in other cases is similar.
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We shall check now that it suffices to put B=C, uC,. We complete
the proof by showing that, for each i€ {1, 2, 3, 4}, A, n(D AB)e ¢, where A,
=EXxE, A=ExF, Ay=F xE, and A, =F xF.
For i =1 we have
A N(DAB)=(A; "nD)A(A; "B) =(A; nD)A[(A, nCy) U (4, nC,)]
< [(4y "nD)A(4; nCJu (4, "nD)A(4; N C))]
=[(4, nB)A(A; nCy)]u (4, nB)A(4, nC,)]
= [4, n(B,AC))JU[A, n(B,AC))].
Since B, AC,e ¢ and B, AC,e ¢, we have 4, n(DAB)e #.
For i =2, 3, 4 the proof is similar.
Proof of Proposition 2. Let us well order the set
ANy, f={N,: a< 2.
Observe that
Ny = ) 6, where €, =0(B0U{Ng: B<a}).

a<2®

Clearly, ¢, = o/, 0 o/,: Let now De &/, N o/,. By Lemma 3 there are Be #
and a < 2° such that
DAB=N,, D=(DAB)AB=N,ABe%,,,.
We complete the proof by showing that () %, is not c.g. First notice

a<2@

that, for all xel, {x} xEe o/, N o, since
{x}xE={x}xlmR
and
{x} xE = {x} xInP for xeE,
" Ux}xInP  for xeF.

On the other hand, for every a < 2 there is xe I such that, for every f < a,
(Ny), is countable, so %,({x} xI) = #({x} xI). Since E is not a Borel set,
{x} xE¢%¥,. Thus Lemma 2 completes the proof.
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