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0. Introduction. Let C(X) denote the Banach lattice of all real-valued
continuous functions on a compact Hausdorfl space X. By a Markov operator
Twe mean a linear and positive operator on C(X), i.e., Tf > 0 for f > 0, with
T1 = 1. A Markov operator T is called strongly mean ergodic (s.m.e.) if the
Cesaro means

A f=n"f+Tf+ ... +T"Y)

converge in C(X).

There are many examples of Markov operators for which C, the space of
all T-invariant continuous functions, is not a sublattice of C(X) (see, e.g., [3],
[6]). Furthermore, as pointed out in [3], there exists a Markov operator for
which C; is not even a lattice with the canonical ordering inherited from C(X).
The lattice properties of the space C; have been studied in [1], [3], and [4]. In
[3] we have defined the lattice boundary 0,(X) of the Markov operator T in the
case where C, forms a lattice as the set

0r(X) = () {xeX: modf(x) = |f(x)I},

where ﬂ is the intersection over all f from C,, and mod f denotes the lattice
modulus of fin C;. From the Proposition and Corollary 2 in [3] it follows that
0(X) is a closed T-invariant set and is equal to the conservative set provided
T is s.m.e.

In the sequel let » and Q be as'in [1]. In [1] it is proved that

OT:=cl({xeX: x(5,)eexQ})

is a nonempty closed T-invariant subset of X and if, in addition, C; is a lattice,
we have the equality 0T ="0,(X), and therefore the lattice boundary is always
nonempty (see Theorems 1 and 2 in [1]).

As in [4] let 2 denote the partition of X generated by the level sets of C.
In 2 we distinguish those elements, called ergodic sets, which support at least
one T-invariant measure. We denote the collection of all ergodic sets by &.
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Corollary 3 in [1] says that C; is a lattice iff every f from C(0T) which is
constant on the cells of the restricted partition 2|, extends uniquely to some
feC,. Note that this result does not say what the lattice modulus is.

In this note we continue investigations concerning the lattice properties of
C,. The main purpose is to establish conditions under which the lattice
modulus of every fe C; is equal to the pointwise limit lim A,| f|(x) (Theorem 1).
As we shall see, this property means that the lattice boundary has invariant
measure one (see (2) in Theorem 1). In Section 2 we explain, in terms of the Sine
ergodic decomposition of the Markov operator T, when C, forms a sublattice
of C(X) (Theorem 2). This theorem generalizes a previous result on operators
having topological ergodic decomposition, and contains the case of s.m.e.
operators (see Theorem 2 and, respectively, Theorem 3 in [3]).

1. When does the lattice boundary have invariant measure one? Recall that by
the center M of a Markov operator T we mean the closure of the union of the
supports of all T-invariant probabilities. Equivalently, we can write

M= ){xeX: f(x) =0},

where the intersection is taken over all continuous functions f for which the
Cesaro means A,|f| converge pointwise to zero (see [5]). It is well known that
then M is always a subset of the conservative set W:= Ué"’ (see [4]).
Further, we need the following proposition which supplements Theorem
1 in [1].
ProroSITION. 0T ¢ W. If, in addition, C; is a lattice, then 0T is a union of
certain invariant cells in 9.

Proof. To prove the first part it suffices to show that
{xeX: x(6,)eexQ} c W.

First recall that %(d,) = x(6,) iff f(x) =/ (y) for every feCy, so 2 is the
.partition into the level sets of the mapping x — %(0,). Now notice that if for
certain De 9

Dn{xeX: x(d,)eexQ} # G,

then, by the definition of 2, D must be a subset of {xeX: »(d,)eexQ}.
Therefore, if we show that those D are invariant, we will get the inclusion
0T = W, since every closed invariant set D carries an invariant measure and
Wis closed. Let xeD and x(é,)eexQ. By the argument used in the proof of
Theorem 1 in [1] there exists a closed subset X, = dT such that %™ '(x(d,)) is
the set of all probability measures on X,. For any y in X we have ye X iff
%(6,) = %(d,), so in fact X = D. Since

#(T*o,) = %(3,),

we have suppT*é, < D, whence D is invariant. If, in addition, C; is a lattice,
then by Remark 1 in [1] the closure in the definition of 0T can be dropped.
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Therefore, the last statement of our Proposition follows immediately from the
above proof.

Using the positivity of T it is easy to check that the existence of the
continuous pointwise limit lim A4,| f|(x) for every fe C, implies that C, forms
a lattice with the modulus

(%) mod f(x) =1imA4,|f|(x), xeX.

Clearly, on 0;(X) we have mod f=|f|. On the other hand, if C; is a lattice,
then by Theorem 2 in [1] we have

0r(X)#9 and mod f=|f| on 0,(X).

The following theorem explains when equation (*) for the lattice modulus
holds.

THEOREM 1. For the Markov operator T the following conditions are
equivalent:

(1) For every fe C there exists fe C such that | f| = fa.e. for every invariant
probability measure.

(2) C; is a lattice and 0(X) has invariant measure one.

(3) C; is a lattice and 0,(X) = W.

(4) For every continuous function f which is constant on each ergodic set there
exists fe Cr such that f=f a.e. for every invariant probability measure.

(5) For every feC there exists a continuous pointwise limit limA,|f](x),
which defines the lattice modulus in Cj.

Proof. To prove (1)=(2) it suffices to show that for fe C, the lattice
modulus is equal to f. First, notice that f> |f]. Indeed, for a fixed point xe X
let (n) denote a subnet along which A}J, converges weak* to some T-invariant
measure u,. Then, by the positivity of T, we have by assumption

fe) = fap, = [Ifldu, > 1f ().

Now, let ge C, with g > |f]. If we take
h(x) = min{g(x), f(x)},

h(x) > [hdp, = | fdu, = J().

This proves that f is the least continuous invariant function majorizing |f],
which means that modf = f.

(2) = (3). Since C; is a lattice, we have 0T = 0,(X) (see Theorem 2 in [1])
and, by the Proposition, 0 (X) < W. If E is now an ergodic set, then by
assumption we have

then Th < h and

Endp(X) # 9,

and therefore E < 0,(X) (see the Proposition).
Implication (3)=(4) is a special case of Corollary 3 in [1].
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(4)=(1) follows from the inclusion M c W (see [4]).

(5)=>(2). Since mod f > | f| and lim A,(mod f—| f])(x) = O for every x€ X, we
have modf = |f] ae, ie., u(0;(X)) =1 for every invariant probability mea-
sure U.

. (2)=(5). For a fixed x let (n') denote a subnet along which A;.é, converges
to some invariant measure u, in the weak* topology. Since, for every fe C, and
xeX, imT"|f|(x) exists and is equal to limA,|f}(x), we have

limA,|f|(x) = lim A4, | f|(x) = {|fldp, = {mod fdp, = mod f(x).

This concludes the proof of Theorem 1.

We observe that, for T's.m.e., condition (5) is fulfilled trivilly, and therefore
in this case d;(X) = W (for another proof of this fact see Corollary 2 in [3]).

Remark. The Example in [3] shows that 0T need not have invariant
measure one even if Cy is a lattice. Consequently, the lattice modulus of fe C.
need not be the limit of the Cesaro means A4,|f].

2. C; as a sublattice of C(X). We have noticed that for the Markov operator
T'the boundary dTis the closure of the union of the collection &, consisting of
all ergodic sets contained in {x€ X: »(d,)eexQ}. In [3] we have considered an
example of a Markov operator for which the class of invariant elements of & is
larger than &,. Indeed, in that example C; consists of affine functions on
Xc[-1,1], & consists of the invariant sets {0}, {—1}, {1}, but
0T = 0,(X) = {—1, 1}. On the other hand, if T's.m.e., then every ergodic set is
invariant (see [6]), and as we have already observed in [3] we have &, = §.

Now we prove that if, in addition, every level set D€ 2 is invariant, then C
is a sublattice of C(X) and vice versa. In particular, we see in virtue of Theorem
1 in [3] that, for T's.m.e., C is a sublattice of C(X) iff the conservative set is the
whole space X (for another proof see Theorem 1 and Corollary 2 in [3] and
Theorem 9 in [2]). Furthermore, it is worth noting that also Theorem 2 in [3]
is a simple consequence of the following

THEOREM 2. If Tis a Markov operator, then C is a sublattice of C(X) iff each
cell of 9 is T-invariant.

Proof. If C; is a sublattice, then d,{X) = X and by the Proposition each
De 2 is T-invariant. To see the converse, for every De 2, fe C; and xe D we
have

TIfI(x) = [I/ldT*s, = IS) |f1dT*o, = |f(x)I,

since f= const on D.

Remark. Example 6 in [6] shows that the equality W= X does not imply
that each D from 2 is invariant.
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