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I. Introduction. Menger [2] defined a statistical metric space (briefly,
an SM-space) to be an ordered pair (S, '), where S is a set and F is
a transformation from 8 x 8 into the collection of all left-continuous
distribution functions such that if p, ¢ and r belong to 8, then

1. F,,(0) =0 (F,, denotes F(p, q));
II. Fpe(0+) =1 if and only if p = ¢;

III. F,, = F,,;; and

Iv. if F,,(x) =1 and F,(y) =1, then F, (z+y) = 1.

A Menger space [3] is a triple (8, F,T), where T is a t-function
(defined below) and (8, F) satisfies the above-mentioned definition with IV
replaced by

IVm. F,(x+9y) = T[Fp(x), Fpr(y)] for all x>0 and y > 0.

A t-function is a function 7' from the square dise I2 into I such that
if a, b, ¢ and d are elements of I, then

(1) T(0,0) =0 and T(a,1) = a;

(2) T'(¢yd)=T(a,bd) if c=a and d > b;

(3) I'(a,b) = T(b,a); and

(4) T(a, T(b,c)) = T(T(a,b), ).

Also of interest in this regard are functions 7' which satisfy the above-
mentioned definition with (4) omitted and “7'(a,1) = a” weakened to
© “T(1,1) =1 and T(a,1)> 0 if a > 0”. Such functions will be called
t'-functions. The ¢'-functions are partially ordered by the relation T is
weaker than T' (T" is stronger than T) if and only if T(a,bd) < T'(a,b)
for all a, b in I%, and strict inequality holds for at least one pair a, b. Of
interest have been the following t'-functions (listed in the increasing
order of strength):

T.(a,b) =max(a+b—1,0);

Ty(a, b) = ab;

Ts(a, b) = min(a, b); and

T.,(a,d) = max(a, d).
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T,, T, and T; are actually ¢-functions, 7, being the strongest of all
t-functions.

In [4], Spadek introduced a notion which he called a random metric.
Although quite different from the notion of an SM-space, random metrics
have been related to SM-spaces. For example, Stevens in [5] uses the
notion of a random metric to define a class of SM-spaces which he terms
the metrically generated spaces. He gives a rather complete classification
of the metrically generated spaces within the ¢{-function framework of
the Menger spaces. It is the purpose of this paper to give a similar classi-
fication scheme for another class of SM-spaces, the Wald spaces.

A Wald space [7] is an SM-space (S, F) such that if p, ¢ and r belong
to S, then

IVw. F,,(2) = (Fy* F,,) (¢) for all numbers z.

Schweizer and Sklar [3] prove the following two theorems, which
give relationships between Wald spaces and Menger spaces:

THEOREM A. If (8, F) is a Wald space, then (S, F,T,) is a Menger
space.

THEOREM B. If (S, F) is an SM-space such that IVm holds for T = T,
and for all triples of distinct points of S, then (S, F) ts a Wald space.

(It was shown by example that this theorem cannot be strengthened
by replacing T, by the weaker ¢'-function T%.)

It will be shown here that Theorem A cannot be strengthened by
replacing 7', with a stronger function (or by a function which is not com-
parable to T,) because of

THEOREM 1. There exists a Wald space (S, F) such that Ty ts the strong-
est t-function T such that (8, F,T) is a Menger space.

On the other hand, Theorem B will be strengthened. Let T,, be the
t'-function such that

0 ifa=0o0rbd=0,

T,(a,b) =
w(®) ) [max(a,b)]?! H0<a<land 0<bd<1.

T, is weaker than 7,, but T, and T, are not comparable.

THEOREM 2. If (8, F) ts an 8 M-space such that IVm holds for T =T,
and for all triples of distinct points of 8, then (8, F) is a Wald space.

Now, Theorem 2 cannot be strengthened by replacing T, by a weaker
t'-function because of

THEOREM 3. If T' is a t'-function which is weaker than T,, then there
exists an SM-space (S, F) such that IVm holds for T = T' and for all triples
of distinet points, but such that (S, F) is not a Wald space.

II. Proofs. Extensive use is made of the techniques and results of
Thorp [6].
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Proof of Theorem 1. The example constructed in the proof of
Theorem 1 of [6] will be used. S is the set of all triples (a, b, n) such that
0<a<l1l, 0<b<1,andnisin {1,2,3}. The functions F,, are defined
as follows:

If p and ¢ are in § and do not agree in the first two terms, then

va = J, Where J is the distribution function such that J(z) = 0if x <1
and J(z) =1 if >1. If p = (a,b,1), ¢ =(a,bd,2) and r = (a, b, 3)
belong to 8, then

0 if z<1/2, 0 if 2<1/2,
Fplr)=16 if12<x<1l, F,@x) =1 ifl2<zr<l1,
1 ifl<a, n ifl<ae,
0 ifa<1
F,.(z) = ab 1t‘1<w 3/2,
1 if 3)2< .

Here, and in examples which follow, it will be implied without so
stating that F,,, F,,, F,,, etc. are constructed so that (8, F) is an SM-
space. It is shown m [6] that T, is the strongest {-function 7' such that
(8, F,T) is a Menger space (in fact, it is shown that T, is the strongest
t'-function 7 such that IVm holds in this example).

Now, it will be shown that (8, F) is a Wald space. It follows from
Lemma 3.1 of [3] that IVw need be verified only for triples of distinet
points of S.

First, suppose p = (a,b,1), ¢ = (a,b,2) and r = (a, b, 3) belong
to 8. If G and H are distribution functions such that G(0) = H(0) = 0,

(G+H) (2) = [G(e—y)dH (y) < G(x) [ 1dH (y) = G(2)H (=),

and F,, > F, F, and F,>F,,F,, so it is only necessary to verify
that F,.(v) > (F *Fq,) (w) for all . We have

0 if 2<1

(Fpg* Fp)(x) = o fl<o<3p, < F,.(x) for all .
a+b—ab if 32<2x<2,
1 if 2<u, J

Now, suppose p, ¢ and r are elements of S which do not all agree
in the first two terms. Assume p and ¢ fail to agree in the first two terms.
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Then either p and r or else ¢ and r fail to agree in the first two terms.
Assume that ¢ and r fail to agree in the first two terms. Then

ForFoy = Fopd <J-Fp<J = F,y,

similarly,

Also,
(Fpg* Fgp) () = (I*J) (0) = J(—1) < Fp(x) for all =.

Thus (S, F) is a Wald space.

Proof of Theorem 2. Suppose (S, F) is an SM-space such that
IVm holds for T' = T, and for all triples of distinct points. In showing
that (S, F') is a Wald space, IVw need be checked only for triples of distinct
points of S, so suppose p, ¢, r is such a triple. Let

z, = max{z|Fy(z) =0} and =, =max{r|F,(r) = 0}.

Now

+o00

[ Fo(@—9)dFpy(y) = [ Fop(w—y)dFp,(y) =0,
% s

so if ¢, +x, < z, then it follows that
z—-zp
(Fpg* For) (3) = [ Fop(@—y)AF p (y) < Fop (53— 23) Py (@ — ).
1
If ,+x, > @, then (F,*F,) (x) = 0 < Fp(7); 80 assume @, +x, < .
F,,(x—x;) > 0, so there is a ¢ > 0 such that if 0 < ¢ < ¢, then
Fo(@—w,—1)>0 and Fg,(r,+1t)>0,
so that
Fpp (%) = [max (Fpy (2 — 3 —1), Fyp (1 1))]2.
Since F,, is left continuous, it follows that
Fpr(w) = [qu(-’”—'wz)]g-
It can be shown in a similar way that
Fop(®) > [Fop(w—2,)]2.
Thus it follows that

Fpp(0) > Frg (49— 0) Fon (0 —0) > (Fpgt Fy) (3).
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Remark 1. Theorem 4.2 of [3] states that if (S, F) is equilateral
(i.e. there is a distribution function G such that if p and ¢ are distinct
elements of §, then F,, = (@), then IVm holds for T =T, and for
all triples of distinet points of S. The converse of this theorem
is also true, for suppose (8, #) is such that IVm holds for T = T, and
for all triples of distinct points of 8. Let p and ¢ be different points of S,
and let G = F,,. Then if p’ is any other element of S,

Fo(#) = Ty (Frp (2)y Fpig(0)) = Fppe(®)  for all .
Similarly,
Fo(x) > Fp(x) for all @,

so ¥y, =F, =G.

Furthermore, it can be shown that if ¢’ is an element of S different
from p and p’, then F,, = F,, = G. Therefore, Theorem B just states
that every equilateral SM-space is a Wald space.

The following simple example satisfies the hypothesis of Theorem 2
but is not equilateral:

S8 =(p,q,7), Fpelx) =1/2 if 0<o<1, and Fy(z) =1 if 2> 1,
F, = F,, and F,, = F3,.

On the other hand, the example constructed in the proof of Theorem 1
is a Wald space which does not satisfy the hypothesis of Theorem 2.

Proof of Theorem 3. Suppose T is a t'-function which is weaker
than T,. Let a’, b be such that T(a’, b) < T, (a’, b). It follows from the
definition of T, that ¢’ and b are both positive. Assume a’ < b; let ¢
= T(a’, b), and let a be a positive number less than min(c'?, a'), T(a, b)
< ¢ < b2 Let 8 contain just three points 1, 2 and 3, and let F be defined
as follows:

(0 if <0,

a if 0<ao<1,
F,,(x) = Fpy() =ﬁ ¢? ifl<a<?2,

b if 2<a2<3,

1 if 3<ua,

0 if <0,

P (z) = @ if 0<e<<l,
c fl<ao<3,
1 if 3<ua.

It can be verified that IVm is satisfied for all triples of distinct points.
In verifying that F,3(x+y) = T(F,,(%), Fy(y)) in the ranges 0 <z +y <1
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and 2 < z+y < 3, the fact that T is actually weaker than T',, is necessary.
However, (8, F) is not a Wald space, because

3
(Fra*F) (3) = [ F1a(3—9)dFn(y) = 0+2a(b—0?) > ¢ = Fyy(3).
0

Remark 2. Let T be the collection of all #’-functions T’ such that
if (8, F) is an SM-space for which IVm holds for 7 = 7" and for all triples
of distinct points of 8, then (8, F') is a Wald space. Theorems 2 and 3
gshow that 7', is a minimal element of T't, in that T, is an element of T+,
but no element of 7* is weaker than 7T',,. However, it has not been shown
that T, is the absolute minimum of 7'*, in the sense that every other
element of 7'+ is stronger than T,. In fact, 7+ has no absolute minimum,
because the following is an example of an element of 7+ which is not
comparable to T,:

[max(a, b)]* if max(a,bd)<1/2 and min(a, d) < 1/8,
T (a,b) =11/4 if max(a,b) > 1/2 and min(a, b) < 1/8,
1 if min(a, b) > 1/8.
T’ is a t'-function, but 7’ is not comparable with T,, because
T7@1,1/9)< T,(1,1/9) and T'(1/2,1/2)> T,(1/2,1/2).

Now, suppose T' does not belong to T+. Then there exists an SM-
space (8, F) such that IVm holds for 7 = T" and for every triple of distinct
points of 8, but (8, F) is not a Wald space. Then there exists a triple
P, q, r of distinet points of § and a number x such that

F,.(2) < (Fpg*Fg) (7).
Assume that F, (z) > F,(x). Then F,, (x) > 1/2, otherwise
Fpp(2) > T (Fpg(a), 0)

= [Fug(@)]2 > Fiy(2) Py (@) > [ Fpg(@—y)dF . (9).
0

Therefore, Fy, (z) > T (Fpy(), 0) = 1/4. Let
o, = max{y|Fg(y) <1/8}.

Then F, (¢—x,)<1/8, otherwise there i3 some y < x—a, such
that F,,(y) > 1/8, Fp(z—y)>1/8 and F,.(2) =T (Fpu(y), Fulz—1y))
= 1. So

(Fpg* Fyy) ()

z—a

= [ Ful@—9)aF)+ [ Fule—y)dF,(y) <1/8+1/8.
0

T—T
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Thus
1/4 < Fpp (@) < (Fpg* Fpp) () < 1/4,

and this is a contradiction.

A simple example of an SM-space (S, F) such that IVm holds for
T =T (but not for T = T,) and for all triples of distinct points of 8
is the following:

8 =(p,q,7)y, Fpe(w) =1/4 if 0<2<1, Fo(r)=1if #>1, and
Fpp(®) = Fp(v) = Fa,(2x) for all .

Remark 3. In contrast to Remark 2, T, is the absolute maximum
of the collection 7~ of all ¢-functions 7' such that if (8, F') is a Wald space,
then (S, F, T) is a Menger space.

Remark 4. In [1], the results of Stevens [5] are extended to a class
of SM-spaces which properly contains both the metrically generated
spaces and the Wald spaces. Following the motivation behind the defi-
nition of a Wald space, a W-space is defined to be an SM-space for which
there exists a pair (d, P) (called a stochastic metric in [1]) such that P
is a probability measure and d is a transformation from 8 x § into the
collection of all P-measurable random variables such that if p, ¢, r is
a triple of points of 8,

(i) dp, = 0 almost surely (a.s.) (d,, denotes d(p, q));

(ii) dp, = 0 a.s. if and only if p = gq;

(iii) d,, = dgp a.8.;

(iv) P(dpg+dp < 7) < P(d,, < ) for all x;
and F,, is the distribution function for d,,.

Triangular inequalities other than (iv) are also investigated in [1].
Among the theorems proved are the following:

(1) T, is the absolute maximum of the collection U~ of all #'-func-
tions T such that if (8, F') is a W-space, then (8, ', T') is a Menger space;
and

(2) T, is a minimal element of the collection U™ of all #’-functions 7"
such that if (8, F) is an SM-space such that IVm holds for T = 7" and
for all triples of distinct points of S, then (8, F') is a W-space.
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