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1. Introduction. Let M be a Riemannian manifold with a (possibly
indefinite) metric g.
A tensor field 'T‘ln-‘pjlqu of type (p, q) on M will be called recurrent if

(1) Thl...hp’lm‘ T1-ip L= ,[J-,...hp“m‘q'k T1ip

q Jy---dg
where the comma denotes covariant differentiation with respect to g¢.
Relation (1) states that at any point xe M such that T(x)# O there
exists a (unique) covariant vector a (called the recurrence vector of T) which
satisfies the condition

(2) fl."ipjl...jq.k (x) = a Tilmipjl,,,jq(x).

A Riemannian manifold M will be called recurrent [13] (Ricci - recurrent
[7] if its curvature tensor (Ricci tensor) is recurrent.

According to Adati and Miyazawa [1], an n-dimensional (n = 4)
Riemannian manifold M will be called conformally recurrent if its Weyl
conformal curvature tensor

jl...jqa

1
(3)  Chijx = Ruiji —nTz(gij Ry —gix Ryj+ g Rij— gnj Rit)

R

+ m (Ynk 9ij — Gik Inj)

is recurrent.

If Cyijxs =0 everywhere on M and dimM > 4, then M is said to be
conformally symmetric [2].

Clearly, the class of conformally recurrent manifolds contains all
conformally symmetric as well as all recurrent manifolds of dimension n > 4.

A conformally recurrent manifold (M, g) is said to be simple [8] (s.c.r. in
short) if its metric is locally conformal to a non -conformally flat conformally
symmetric one, 1.e., if for each point xe M there exist a neighbourhood U of
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x and a function p on U such that § = (exp2p)g is a non-conformally flat
conformally symmetric metric.

Obviously, every non-conformally flat conformally symmetric manifold
is necessarily s.cr. The existence of essentially s.c.r. manifolds, i.e. of s.cr.
manifolds which are neither conformally symmetric nor recurrent, can be
established [8] as follows:

THEOREM A. Let M denote the Euclidean n-space (n > 4) endowed with
the metric g;; given by

g;jdx'dx) = Q(dx')* + k,, dx* dx* + 2dx" dx",
Q = (Ak1“+BCA“) xl x“,

where i,j=1,2,....,n A, u=2,3,...,n—1, [k;,] is a symmetric and non -
singular matrix, [c;,] is a symmetric and non-zero matrix satisfying k*c;,
=0 with [k*]=1[k;,]""', and A, B are functions of x' only such that
0 # B # constant and A # cB (c = constant).

Then M is an essentially s.c.r. Ricci-recurrent manifold.

So, the class of s.c.r. manifolds is a natural extension of the class of non -
conformally flat conformally symmetric ones.

Investigating s.c.r. manifolds the present author has proved the following
results: '

THeoreM B ([8], Theorem 1). A Riemannian manifold M of dimension n
=4 is s.cr. if and only if (1) Cyj # O (everywhere on M), (ii) Cyiji = & Chiji
(ii1) the recurrence vector a; is locally a gradient, and (iv) the Ricci tensor is a
Codazzi one (i.e., R, = Ry '

THEOREM C ([8], Theorem 3). The scalar curvature of a non-locally
symmetric s.cr. manifold vanishes. '

THeoREM D ([8], Theorem 4). Let M be a non-locally symmetric s.c.r.
manifold. Then M admits a unique function F such that

(5) FCllijk = R,] Ru‘—R“‘ th.

4)

F is said to be the fundamental function of M. Obviously, F(x) = 0 if and
only if rank R;;(x) < 1.

An analytic conformally recurrent manifold (M, g) will be called special
if its metric is locally non-trivially conformal to a non-conformally flat
conformally recurrent one, ie, if for each point xeM there exist a
(connected) neighbourhood U of x and a non -constant function p on U such
that § =(exp2p)g is a non-conformally flat conformally recurrent metric.

From the above definitions it follows that every analytic non-
conformally symmetric (and therefore each analytic essentially) s.c.r. manifold
is necessarily special. The converse statement, as we shall show (Example 1),
fails in general. Moreover, we shall construct (Example 2) a non -recurrent
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conformally recurrent metric with non-vanishing scalar curvature (cf.
Theorem C) which is not non-trivially conformal to any conformally
recurrent metric.

The remainder of this paper deals with s.cr. manifolds. In connection
with Theorem D, there arises an interesting question whether there exist
essentially s.c.r. manifolds with a constant as well as with a non-constant
fundamental function. It will be shown (Example 3) that this existence
problem has an affirmative answer. We shall also prove (Theorem 2) that the
Ricci tensor of non-locally symmetric s.c.r. manifolds satisfies rank R;; < 2,
and that every s.cr. manifold with a metric of index 1 (Theorem 1) is
necessarily Ricci-recurrent. Theorem 5 deals with a class of conformally
recurrent manifolds which admit on some neighbourhood of each point
xe M satisfying R;;(x) # 0 a non-zero parallel vector field, and Theorems 3
and 4 involve certain results on the Ricci tensor of non-locally symmetric
s.c.r. manifolds. Finally, the last result (Theorem 6) deals with s.c.r. manifolds
whose Ricci tensor is not parallel.

Unless stated otherwise, all manifolds under consideration are assumed
to be connected and of class C*. Their Riemannian metrics are not assumed
to be definite.

2. Preliminaries. In the sequel we need the following results:
LemMma 1 ([10], Lemma 2). If a; and Py, are numbers satisfying

Pimjx = — Pinmij> 20 Piymjx + @ Pimix + ax Pipmji = 0,
then a; =0 or Py, =0.

LemMma 2. The Weyl conformal curvature tensor satisfies the following
well - known relations:

Clu'jk = _Cihjk = _Clu'kj = Cjkhia

(6) Chijk +Cjpi + Ciiy =0, Cy=Cipy=Cy =0,
, n—-3 1 '
C ijkor = —71_—_2 [(Ru‘j.k - Rik. j) —2_('1_—1)'(R.k gij— R.j gik):,-

LemMa 3 ([9], Theorem 1). Suppose that M admits two conformally
recurrent metrics g and g conformally related by § = (exp2p)g.
Then

(a) Pi Cuje+ Py Cosi + P Cpaiy = 0

everywhere on M, p; = 0;p.

(b) At each point xe M such that Cyyu(x) # 0, we have a; = a;—4p;
and p"'p, =0, where a; and a; denote recurrence vectors of C and C,
respectively.
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LemMaA 4 ([9], Corollary). Let (M, g) be conformally recurrent and p a
function on M. Then § = (exp2p)g is conformally recurrent if and only if p
satisfies condition (a). ‘

LEmMMA 5 ([8], Theorem 2). Every s.cr. manifold with a definite metric
is locally symmerric.

LemMA 6 ([8], Lemma 5). Let M be an s.c.r. manifold. Then the following
two conditions are equivalent: (i) There exist xe M and exterior 2-forms A
and B at x such that Cy; (x) = Ay By (i1) Cyiji = ewy; wj, where le| =1 and
w is a (uniquely determined) recurrent absolute ([12], p. 204) 2 -form of rank 2
on M.

LemMA 7 ([8], Theorem 5). If an s.c.r. manifold is not Ricci-recurrent,
then it admits a unique recurrent absolute exterior 2-form satisfying

(7) Chijk = eWp; Wj

with le| =1, rankw = 2 and w,w’; = 0.
Lemma 8 ([8], Proposition 1). Let M be an s.c.r. manifold. If M is not
locally symmetric, then the relation

(8) Ry Cvm‘jk - Ry Cy; ikt R Chmjk —Rin Chljk

+ Rji Chimk = Rjm Chitic + Ry Chijm— Rym Cpijy = 0
holds.

LemMmAa 9 ([8], Lemma 8). Let M be a non-locally symmetric s.c.r.
manifold such that

di Ciju+d; Cpyi +di Cpyij = 0
for some field d; of non-:zero vectors.

If Cyiji is not of the form (7), then d; ; = A;d; for a certain vector field A;
on M. Moreover, if d;;=d;;, then rank R;; < 1.

LemMma 10 ([8], Theorem 6). Every s.c.r. manifold M with non - parallel
Ricci tensor satisfies rank R;; < 2. Moreover, if M is Ricci-recurrent, then
rank R;; < 1.

LEMMA 11. The Weyl conformal curvature tensor of every s.c.r. manifold
satisfies the condition

9) @; Ciji +8; Copi + @y Cpyi = 0,

where a; is the recurrence vector of C.

The assertion is an immediate consequence of Lemma 3 and the
definition of an s.c.r. manifold.

LeEMMA 12. If the Ricci tensor of a non-locally symmetric s.c.r. manifold
is of the form
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where |d| = 1, then the equations

(11) d; Chijic+d; Cpui +dy Cpyi5 = 0,
(12) d; Ryji+d;j Ryyi +dy Ryyj = 0
hold.

Proof. Alternating (8) in h, [, m and making use of Lemma 2, we
obtain

2(Ri; Cpmjic + Rim Cipji + Rip Conja) + Rjm Ciris + Ry Copmin
+ Ryj Cotix + Ryt Cpmji + Ry Ciaji + Ry Cyji = 0,
which, in view of (10), yields
2d; (d) Cumji + dm Cinjic+ dp, Cougp) + dj (d) Comix + dpm Cipire + diy Coia)
+d, (d; Chmji +dp Cipji+d), Cpj)) = 0.
Putting Piymj = dy Comjx +dm Cipj +dy Cpy;; and applying Lemma 1, we
easily obtain (11).

Relation (12) is an immediate consequence of (11), (10) and Theorem C.
This completes the proof.

LemMAa 13 ([8], Proposition 2). The curvature tensor of every s.cr.
manifold satisfies

Rlu'jk.lm - Rhijk.ml =0.

LEMMA 14 ([6], Theorem 1). Suppose that the Weyl conformal curvature
tensor of a Riemannian manifold M (dim M > 4) satisfies the condition

(13) Chijk.l =q Chijka

where the recurrence vector a; is assumed to be locally a gradient.
If M admits a symmetric parallel tensor h;; (which is not a multiple of g;;)
and M is neither conformally flat nor recurrent, then

1 1
(14) Rij_;Rgij =G (hij_;hgij)

for some function G on M, h=g"h,,.
The following lemma seems to be well known:

Lemma 15. Let v* denote a parallel vector ﬁeld on M. Then the
equations

v, R’ijk = 0, v, Rrj = 0, v, Rr.'jk.l = 0, v, Rrj" = O,
U’Rhijk,r =0, v R‘.'j,r =0, U’R', =0
hold.
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LEmMmA 16 ([3], Theorem 1). Let M denote the Euclidean n-space
(n = 4) endowed with the indefinite metric g;; defined by

(—2e ifi=j=1,
(15) g,-j={epr,- ifi+j=n+1,
0 otherwise,
where the functions F; = F,,,_; are given by F,(x,y,...)=G(x, y)+ A(x),
Fy(x,y,..)=G(x, )+B), F,(x,y,..)=G(x,y) for A=3,...,n—2, and
e = constant # 0.
Then M is conformally recurrent.

LEMMA 17. Let M denote the Euclidean n-space (n = 4) endowed with
metric (15). Then the Ricci tensor of M is a Codazzi tensor.

Proof. The reciprocal g of g;; is of the form

(16)

2eexp(—2F,) ifi=j=n,
g‘j=%exp(—F,-) ifi+j=n+1,
0 otherwise.

Moreover, the only components of the Ricci tensor and Weyl conformal
curvature tensor, which may not vanish, are those related to [3]:

-2 -2
Ry, = "T(G§+2(;x A4,-2G,), Ry, ="— 7 (G:G,~2G,),
(17) 5
n—

As a consequence of (16), we have g!! = g'2 = g?2 = 0, which, in view of
(17), implies R =0 and

(18) Clijk = gl'Cn'jk =0= 92' Crijk = Czijk'

Denote by U (if it exists) the open subset of M where C does not vanish.
Since the recurrence vector a; of C is on U the gradient of f = log|C,,,,|
—3G—-2A—2B, we get a, = f, =0 for a =3, ..., n, which, together with
(18), yields C";3, = a,C";; =0 on U. If now C = 0 on some neighbourhood
of xe M, then, obviously, we have C";; ,(x) =0. Hence, by an elementary
limit argument, C";; ., = O everywhere on M. But the last result, in view of (6)
and R =0, implies R;;, = R, ;, which completes the proof.

Let M denote the Euclidean n-space (n > 4) endowed with the metric g;;
given by

(19) dsz = Z g,,,,dx"dxb+ Z gAdeAde,

ab=1 AB=r+1

where [g,] and [g,5] are symmetric and non-singular matrices such that
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(9] is independent of x"*!, ..., x" and [g,p] is independent of x!, ..., x".
The two parts of (19) are the metrics of M, and M, _,, called decomposition
spaces of M.

Remark 1. It is well known that for the metric g; not only the
Christoffel symbols but also the tensors Ry, Ryj, etc. “decompose”, i.e.,
every component with indices from both ranges 1,...,r and r+1,...,nis
zero, and every component with indices from only one range, say 1, ..., r, is
equal to the component of the corresponding symbol or tensor for g,.
Covariant differentiation in decomposition spaces is the same as in M with
respect to corresponding coordinates.

3. Non-simple conformally recurrent metrics. We are now in a
position to show the existence of certain non-simple conformally recurrent
metrics.

Example 1. Let M denote the Euclidean n-space (n > 4) endowed
with the metric g;;, whose only non-zero components are

n—1
g (x', ..., x") = 2 Y &(x)+(n—2)e,_ expx"~?,

i=2
gln=g"|=l, g,-,-=e,- (i=2,..., n_l), |e,'|=1.

Then M is a non-simple essentially (i.e. neither conformally symmetric
nor recurrent) special conformally recurrent Ricci-recurrent manifold whose
scalar curvature vanishes. The Weyl conformal curvature tensor does not
vanish at any point and the recurrence vectors a; of C and b; of R;; are both
non-null everywhere.

Proof. It is easy to verify (cf. [11], equ. (44)) that in the above metric
the only non-zero components of Ry, R;; and C,; are those related to

Riji=ze€, Riypqp-11= en—l(1+(n—2)expxn—l),

S
N ==

Ry,

-2 1
nT(l+expx"'1), Cianr = —Eelexpx"",

-3
Cl,,_l,,_ll=£-2—e,,_lexpx"-l, 11=2, 3,..., n—2.

It can be also found that

n-—2 _ n—2 _
Rin-tn-11.-1 =—2—‘en—1 exp x" L Ryjn-1 =TexPx" L

n_3e e n-1
2 n—-1 xpx b4

1
-1
Ciiatn-1 = —5€:expx"" ",  Ciptp11p-1=

2
and that all other components are zero.
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From the above equations it follows that M is a non-recurrent
conformally recurrent manifold whose recurrence vector a; = 8]~ !. One can
also easily verify that M is Ricci-recurrent and that the recurrence vector b;
is given by b; = §;log(l +expx"~!). Moreover, both recurrence vectors are
non-null vectors everywhere and R = 0.

Since R,,-,; =0 and R,,,., # 0, the Ricci tensor is not a Codazzi
one. So, by Theorem B, M cannot be s.cr. On the other hand, it is easy to
sce that every function p(x') of x' only satisfies condition (a). Thus, by
Lemma 4, M is special. This completes the proof.

Example 1 yields

CoroLLARY 1. For each n >4, there exist n-dimensional essentially
special conformally recurrent Ricci-recurrent manifolds which are not s.c.r.
and whose Weyl conformal curvature tensor does not vanish everywhere.

Example 2. Let M denote the Euclidean n-space (n > 4) endowed
with a metric g of the form (19), where g, is 2-dimensional with non-
constant scalar curvature Q, and ¢,z is an (n—2)-dimensional metric of
constant curvature such that its scalar curvature S is a non-zero constant.

If E =Q/2+S5/((n—2)(n—3)) does not vanish at any point of M, then g
is a non-recurrent conformally recurrent metric whose Weyl conformal
curvature tensor does not vanish everywhere. Moreover, g has a non-
identically vanishing scalar curvature and is not non -trivially conformal to
any conformally recurrent metric on M.

Proof. One can easily verify that in the above described metric the
only non-zero components of Cyj; and Cy;,, are

n-3 . 2
Cabcd = mEGuw CABCD = (n__mEGBCADa
3—n 3—n
(20) Copp = (n_-—_])(n_—Z)Eg“ 9arr  Cauppa = 2(n—1)(n—2) Q.49489ab;
n—3 1

Cabca,e = 2(n—1) 513 2eGbeass  Cancp,a = m Q.. Gacap:

Whel'e a, b, C, d, e= 1, 2, A, B, C, D = 3, ceey Ny Gbcad = 9bc 9ad — Gac Iba> al’ld

Gpcap = 9bc9ap—9acYsp-
Thus, by (20), g satisfies (13) with q; given by

a; = &;l0g|Q +25/((n—2) (n—23)),.

Since S =constant and Q # constant by assumption, the scalar curvature
R (=Q+5S) does not identically vanish. Moreover, in view of S#0, g
cannot be recurrent ([13], Theorem 2.1).

Suppose now that g is another conformally recurrent metric on M such
that § = (exp 2p)g for some function p on M. Then, by Lemma 3, condition
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(a) holds. But (a), in view of (20) and E # 0, yields d,p = 0,p = 0, which,
evidently, completes the proof.

Since C # 0 everywhere, we have

CoROLLARY 2. For each n =4, there exist n-dimensional essentially
conformally recurrent metrics with C # 0 which are not non - trivially conformal
to any conformally recurrent metric. Such metrics are never special.

Clearly, the decomposition metrics in (19) can be chosen to be as in
Example 2 and so that g is positive definite.
Hence, by Corollary 2, we have

CoroLLarRY 3. For each n >4, there exist n-dimensional essentially
conformally recurrent manifolds with a positive definite metric.

4. Simple conformally recurrent manifolds. In the first place we shall
show the existence of non - Ricci-recurrent essentially s.c.r. metrics.

Example 3. Let M denote the Euclidean n-space (n > 4) endowed
with metric (15). Define functions A, B and G by

G(x,y) = x+[expHdy, B=H-2[expHdy,

2 4
A= —S(x_(—n——Z)zJ‘Fdx),

where H = H(y) is an arbitrary function of y only, and F is a given constant
or a non-constant function of x only. Moreover, let e =1. Then M is
essentially s.cr. and its fundamental function is F.

Proof. In view of (17), we get

(21)

-2 2
Cinz=exp2H, Riz="7"expH, Ry=>"Dexp2H,
@) 2 16F 1 16
—n
R, = D (1—(n—2)2)’ f= |lexpHd ——(5x+(n %) dex).

One can easily verify that R?, —R,, R,, = Fexp2H = FC,,,, and that
the recurrence vector of C is the gradient of f. Thus, by Lemmas 16 and 17
and Theorems B and D, M is s.c.r. and its fundamental function is F.

Assume F = 0 everywhere on M. Then, in view of (21) and (22), we have

-2 2 -2
< Ry, = —B—anpH Ry, = nTepoH and R,,,

_3(2-n)
= '
the gradient of h = —$x+2 [expHdy. Since h, = 2expH # expH = f, and
Ci212 # 0, M is not recurrent.

Suppose now that F does not identically vanish. Then, by Theorem D,
there exists an open subset U = M such that rank R;; > 1 on U. On the

exp3H. Hence, M is Ricci-recurrent whose recurrence vector is



324 W. ROTER

other hand, relations R;;; = R ; and R;;, # 0 show that the condition R;;,
= b, R;; implies rank R;; =1. Thus, M cannot be Ricci-recurrent and,
therefore, is not recurrent. Since f # constant, M is essentially s.c.r. This
completes the proof.

Example 3 shows that there exist essentially s.c.r. manifolds with non-
parallel Ricci tensor whose fundamental function does not vanish at any
point. Since such manifolds, which follows easily from Lemma 10 and
Theorem D, cannot be Ricci-recurrent, we have

CoROLLARY 4. For each n = 4, there exist n-dimensional essentially s.c.r.
manifolds which are not Ricci-recurrent.

Remark 2. It is easy to prove that for the metric (4) we have
index of [g;;] = index of [k;,]+1,

the index of a symmetric matrix being understood as the number of negative
entries in its diagonal form (for the details see Remark 1 of [4]).

Thus, in view of Theorem A and Remark 2, we have

CoOROLLARY 5. For each n > 4, there exist n-dimensional essentially s.c.r.
manifolds with metrics of indices from the range {1,2,...,n—1}. Such
manifolds have never definite metrics (Lemma 5).

Remark 3. If M is scr, then T = C,;; C", satisfies condition (2) at
each point of M. So, if T vanishes at some point of M, then it vanishes
everywhere on M. The existence of essentially s.c.r. manifolds satisfying
T#0 (T=0) can be proved by a similar argument as in [4] (see [4],
Lemma 6 and Theorems 2 and 4).

Remark 4. Every s.cr. manifold with a metric of index 1 (or (n—1))
satisfies T # 0. The proof is similar to that of Theorem 4 of [4] (for the
details see Theorems 3 and 4 of [4]).

THEOREM 1. Every s.c.r. manifold M with a metric of index 1 (or (n—1))
is Ricci-recurrent.

Proof. Suppose that M is not Ricci-recurrent. Then, by Lemma 7, we
have w, C";; = 0. Transvecting now (7) with C*;,, and using the last result,
we obtain T =0, a contradiction (Remark 4). This completes the proof.

THEOREM 2. The Ricci tensor of every non-locally symmetric s.c.r.
manifold M satisfies rank R;; < 2. Moreover, if the Weyl conformal curvature
tensor is not of the form (7), then rank R;; < 1.

Proof. Assume (7) and let xe M. If R;;(x) #0, we may choose a
vector u' at x such that u'w’ R;; = d, |d| = 1. Then, by (7), we have FCy,; u"u*
= —eFw,w;, where w; = ¥’ @,; and (R;; Ry, — Ry, R,j) u" u* = dR;;—d, d;, where
d;=u"R,;. Hence, by (5), R;;=dd;dj—edFw;w;, which shows that
rank R;; < 2.

Suppose now that (7) does not hold. Then, by Lemma 7, M is Ricci-
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recurrent. If the Ricci tensor is not parallel, then the assertion is an
immediate consequence of Lemma 10. Assume therefore R;;, = 0. Since M is
not locally symmetric by assumption, M cannot be conformally symmetric.
Hence, there exists a point ye M such that the recurrence vector a; of C does
not vanish on some neighbourhood U of y. By Lemmas 6 and 11, the
assumptions of Lemma 9 are satisfied. Thus, because of g;;=aq,,
rank R;; < 1 on U. Since R;; is parallel, rank R;; < 1 extends to the whole of
M. This completes the proof.

THEOREM 3. The Ricci tensor of a non-locally symmetric s.c.r. manifold
satisfies

Rim Chiji + Rjm Chtti + Rim Cpiij = 0.

The above result has been proved for essentially conformally symmetric
manifolds, i.e., for conformally symmetric manifolds which are neither
conformally flat nor locally symmetric. But its proof, as one can easily verify
([5], Theorem 7) requires only Theorems D and 2 and Lemma 12. So,
Theorem 3 remains also true for non-locally symmetric s.c.r. manifolds.

THEOREM 4. Let M be a non-locally symmetric s.c.r. manifold. Then at
each point xe M such that R;;(x) #0 we have a relation of the form

(23) Ryijx = RijBy+ Ry B;j— Ry By;— th By

for some symmetric tensor B;; at x.

Proof. By Theorems 2 and D, we have two cases. If rank R;;(x) =1,
say R;; =dd;d;, where |d| = 1, then, by Lemma 12, equation (12) holds.

Now, with help of (12), we can follow step by step a proof of Walker
(see [13], p. 45) to obtain

Ryij = d; d; Dy, +dyd, D;;—d; d D,;—d,d; D;,,

where D;; = D; = v"v*R,;;, and v' is chosen so that v"d, = 1.
The last equation leads immediately to (23). Assume now rank R;;(x)
1 1
= 2. In this case relation (23) with B;; = ﬁR,-j+ng,~j is a consequence of
(3), (5) and Theorem C. This completes the proof.
THEOREM 5. Let M (dim M > 4) be a non-conformally flat Riemannian
manifold whose Weyl conformal curvature tensor satisfies (13) with a locally
gradient recurrence vector. If for each point xe M satisfying R;;(x) # O there

exists a non-trivial parallel vector field on some neighbourhood of x, then M is
Ricci -recurrent.

Proof. Let xe M be such that R;;(x) # 0. Denote by v; a non-trivial
parallel vector field on some (connected) neighbourhood U of x. Setting h;;
= v; v; we obtain a symmetric parallel tensor on U which is not a multiple of
gij- Since C cannot vanish on U, either the manifold U is recurrent (and
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therefore Ricci-recurrent) or it satisfies the assumptions of Lemma 14.
Hence. by Lemmas 14 and 15, equation (14) yields

(24) R =(1-n)hG.

On the other hand, differentiating (14) covariantly, we get
1 1
(25) Riju— . R.gij =G, (hu 7 hg; j)’

which, together with Lemma 15, implies v* G, = 0. Contracting now (25)
with ¢** and taking into account "G, =0, we easily obtain

(26) (n—-2)R,; = —2hG .

Hence, by (24) and (26), we have hG ; = 0. Suppose that the constant h
= 0. Then, in view of (24), we find R = 0. But the last result reduces (14) to
the form R;; = Gh;;, which shows that U is Ricci-recurrent. If now G
= constant on U, then (26) implies R = constant. Equation (25) can therefore
be written as R;;, =0. Thus, U is Ricci-recurrent, which, evidently,
completes the proof.

THEOREM 6. Let M be an s.cr. manifold with non - parallel Ricci tensor.
Then the following two conditions are equivalent: (i) M is Ricci-recurrent.
(1) For each point x of M which satisfies R;;(x) # O, there exists a non-trivial
parallel vector field on some neighbourhood of x.

Proof. Let M be Ricci-recurrent and xeM be such that the
condition R;;(x) # 0 holds. Then. by Lemma 10, R;; = dd;d; # 0 (|d| = 1) on
some neighbourhood of x. Using (2) and (10), we get d,(d;,—3b,d))+
dj(diy—3b,d;) =0, b; being the recurrence vector of R;;. But the last
equation implies

(27) d‘-l =%b1d‘

On the other hand, Lemma 13 yields 0 = R;;,;— Rju = (by,;—bii) R;;.
Hence, b; = b ; for some function b. Now, let D; = (exp(—4b))d;. Taking into
account (27) we can easily verify that D; is parallel. Since d; # 0, D; is not
trivial.

The implication (ii) = (i) follows immediately from Theorem 5. This
completes the proof.

Remark 5. Let M denote the Euclidean n-space (n > 4) endowed
with metric (4), where B, [k;,] and [c;,] are such as in Theorem A, and A
= 0. Then M is a non-locally symmetric s.cr. manifold whose Ricci tensor
vanishes. Hence, there exist non-locally symmetric s.cr. manifolds with
vanishing Ricci tensor. Such manifolds are necessarily recurrent. The
considered in Theorem 4 set of points x satisfying R;;(x) # O can therefore be






