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1. Introduction. A random submatroid w, of the projective geometry
PG (r—1, gq) is obtained from PG (r—1, g) by deleting elements so that each
element has, independently of all other elements, probability 1 —p of being
deleted and probability p of being retained. A recent paper of Oxley [4] gives
a matroidal counterpart of several Bollobas’ results [2]. In this paper we
extend some Oxley’s results using the method of Poisson convergence. Our
proofs are very similar to those presented by Karonski [3].

In general, we shall follow Welsh [S] for all unexplained matroid
terminology.

We shall consider projective geometries over a finite field GF (q) which
we take as fixed. For k=1,2,...,r let

=@ —-I)g '=1)..(¢*'=1) and [r]p=1.

Then [’::l, the number of rank-k-subspaces of PG (r—1, g), equals [r],/[k],.

The following estimation (see [4]) is useful:

(1) 0 >, > g0,

where
0<p= ]_[(l—q"')<1.
n=1

In the next parts we consider only simple matroids representable over
GF (q), where q is fixed. If .# is a family of matroids, then by an .#-matroid
we mean a matroid isomorphic to a matroid from .#. By b(.#) we denote
the number of all .#-matroids each of which has rank k and is a submatroid

of PG(k—1, g).
Let X, take values only from Z* = {0, 1,...}. We write

X,mPo(l) or X,»N(0, 1)
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when |X,) or {X,) converges in distribution to a Poisson distribution with
expectation 4 or to a standard normal distribution, respectively.

Let Po(4, A) denote the probability that a Poisson random variable
with expectation A takes values in A cZ™.

We say that {X,} is Poisson convergent if

2) sup |Pr(X,e A)—Po(4,, 4) — 0.

Aczt
Note that the Poisson convergence of {X,} implies that

X,~»Po(4d) if EX,—1, 0<4d<o0,
and
X,~»N@©, 1) if EX,— oo,

where X, = (X,—A)/A; V2
For details we refer the reader to [1].

2. Balanced matroids. Suppose that M is a matroid which has m
elements and rank k and define the density of M as d(M) = m/k. Let

m,(M) = max {d(F): F = M, oF =t}

fort=1,2,..., k, where F < M means that F is a proper submatroid of M.
Suppose that .# is a family of matroids and 1 <t < ¢.#, where

o# = max {gM: Me #).

Let
g, = min [d(M)—m,(M)].
Me#H
eM=1
The balance index of # is defined as
3 e(MA) = min tg,.

1st<oM

If #={M]}, we write simply ¢(M). A matroid M is balanced if ¢(M)
=0, and is strictly balanced if ¢(M) > 0.
The following lemma is similar to Lemma 2.1 in [3].

LEMMA. Let # be a family of balanced matroids each of which has m

elements and rank k. Suppose that M,, ..., M, are #-matroids and for at least
one pair M;, M; we have

oM;noM; #Q® and F,=M,u...UM,.
Then

@) IF.| > %QF..H(@).
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Proof (by induction). The case n = 2. Let H have m elements and rank
k and let M be a #-matroid, |cH noM| =v >0, |M nH| = u. Since M is
balanced, u < mv/k—¢&(4#). Then

(5) |IM U H| = m+|H|—mv/k +&(%).
Substituting H = M, and M = M, we obtain
|F,l 2 QF 2 +e(3)

For n>3 we substitute H=F,_, and M =M, in (5) under the
assumption that v > 0. Then '

3

|F.l = % UFn-1l+k—o(Fooy O M,) +e(#)} = * F,+&(%),

which gives (4) and completes the proof.
The above Lemma will be used in this note only for the case n = 2.

3. Submatroid counts. Let X, = X,(.#) denote the number of .#-
matroids in a random w,.

THEOREM 1. If 4 is a family of balanced simple matroids each of which has
m elements and rank k and is representable over GF(q), then

(6)  sup |Pr(X,(#)€A)—Po(a*(r), )|
Acz?t
4 rif{[1 2
<2p™ b(# bn/k+z(.£)’
P +a‘(r)usxszzk—l[l]{[k] ( )} P

a*(n) = L’(Jb(gz) P
Proof. By #* we denote the set of all #-matroids in PG(r—1, ¢). For

M e .#* defi
€ we define . —{1 if Meaw,
M ™10 otherwise.

Hence X, = Z"XM, Pr(X, =1)=p™ and EX, = a*(r). Let
Me

where

Xr.M = Xr.M(Q) = Z Xr

Fea*
F~M=0

be a random variable counting #-matroids in PG (r—1, q) which are disjoint
with a given #-matroid M. Then as in [1], p. 352, and [3], p. 22, we obtain

() sup |Pr(X,eA)—Po(a*(),

Aczt (r) Fea‘
=Q,F #

E(XrXu).
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Note that

:, soonac 3 [ el

M,Fea* k€I€2k-1
FrM#O,F+M

where u stands for a lower bound for the number of elements in the union of
matroids M and F, and ! is the rank of ¢M NnoF. By the Lemma we have u
2 Imfk +¢(#) and we obtain the inequality

2
Y EXrXw< X d { l b(H)} pimik+ua,
M.Fea* y k<isak-1 L/ k

~M ,O,F,

Hence, we obtain the assertion.

To prove that the family of random variables |X,} is Poisson con-
vergent one has to find when the right-hand side of inequality (7) tends to
zero as r — oo.

We write

2 () = p"q*b(A [k dP)?,
ky -1
n =max {1, b(A([kLd?) },

where and in the sequel .# denotes a family of strictly balanced simple
matroids each of which has m elements and rank k and is representable over
GF (q).

THeOREM 2. If a(r) ~ A, where A is some positive constant, and
ng*’ ~rm = o(1),
then
X, () »Po(4).
If a(r) > o0 and
a(r) = o(n™' g~ reNm),
then
X.(AHmN(O, 1).

Proof. To prove this theorem we show that under suitable assumptions
the right-hand side of (6) tends to zero. Note that using (1) we obtain

rl(l1 2 _ .
[1]{[1(]17(«9’)} la* ()~ p!m e

1
2lk - L) PR - - -
<gq (2) {B‘ '} 1 n {a (r)}l 1/k e(.S')/mq re(S)/m
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- 2_ - -
Sﬁ lq4k rz(.ﬂ/m”{a(r)}l 1/k o(.?)/m.

Therefore

4 rl([!? 2
o Do

a*(r) xs1<2k-1

where
6 = 0(g* = imy)
for a(r) - A >0 and
6 = O(q4k2-r¢(-9')/m” o (r)) 1~ VE=e(S)m)

for a(r) — oo. Hence both © and p™ tend to zero as r — oo, which completes
the proof.

Theorem 1 is a matroid counterpart of Theorem 2.7 in [3]. The first
statement of Theorem 2 is an extension of Theorems 3.1 and 3.12 in [4]. We
obtain these theorems from Theorem 2 if p ~ cq~"™/™ where c is an arbitrary
positive constant and k and m are fixed or x(r) ~ 4 for some positive
constant 4, and km? = o(r). This theorem is also a matroid counterpart of
Theorems 2.8-2.10 in [3].
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