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ON SL(2)-ACTIONS
WITHOUT 3-DIMENSIONAL ORBITS

BY

EWA DUMA (WARSZAWA)

Let us assume that SL(2) acts algebraically on an irreducible algebraic
variety X. The purpose of this paper is to investigate the existence of quotients
(Definition 1) of some open subsets of X by an SL(2)-action.

We deal with an action of SL(2) for which the maximal dimension of orbits
equals 2. Cases of the maximal dimension of orbits equal to 0 or 1 are known:
the first is trivial, the second one is descnbed by Konarski [5] (see Section 2 of
this paper).

Let G2 be the component of the identity of the isotropy subgroup at
a point xe X. We show that there are two possibilities: either there exists an
open subset U = X composed of all points x € X such that G? is conjugate to
T or there exists an open subset U = X composed of all points x € X such that
G? is conjugate to k* (Theorem 2). In the first case we prove that there exists
a geometric quotient of U by SL(2) (Theorem 5). This quotient can be complete
or incomplete. We give appropriate examples. In the second case we construct
an open subset V< U such that the quotient of V by SL(2) exists and is
complete (Theorem 4).

0. Assumptions and notation. All algebraic varieties, groups and mor-
phisms are defined over an algebraically closed field k of characteristic zero.
Let an algebraic group G act on an algebraic variety X. Then X is called
a G-variety. By X6 we denote the variety of fixed points. For xe X let G,
denote the isotropy subgroup at a point x and let G2 denote the component of
the identity of G,.

For any two subgroups H, and H, of G we write H, @~ H, if H, and H,
are conjugate in G, and H, S H, if there exists a subgroup H, such that
HycH, and H, @ H,.

For any connected subgroup H < SL(2) let

g ={xeX: G~ H}.

SL(2) = {(‘c' Z): ad—bc =1, a, b, , dek}

Let
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in its usual matrix representation. Let

a b .
B = {(0 l/a): ack*, bek},
T= {(g l(/)a): aek*},
a 0 0 1\/a 0 .
N = {(0 l/a)’(—l 0)(0 l/a): ack }

and

n=12.. N, =k".

DEFINITION 1. Let G be an algebraic group acting on an algebraic variety
X and let f: X > Y be a G-morphism of algebraic varieties with the trivial
action of G on Y. Then (Y, f) is said to be:

(a) a categorical quotient if for any G-morphism g: X - Z, where Z is
a variety with the trivial action of G, there exists a unique morphism h: Y-»Z
such that g = hof ([11], Definition 1.4);

(b) a quotient if the following conditions are satisfied:

(1) f is surjective and open,

(2) for any open subset U < Y, k[U]—-k[f~1(U)]¢ is an isomorphism,
where k[U] denotes the ring of regular functions on U,

(3) for any ye Y, f ~1(y) is exactly one orbit of the G-action on X ([3], 6.3),

(c) a geometric quotient if it is a quotient and f'is an affine morphism ([11],
Definition 1.6).

If (Y, f) is a categorical quotient or a quotient, let us denote by X/G the
variety Y.

Remark 1. It follows directly from the above definition that if (Y, f) is
a_categorical quotient of X by G, then fis surjective, and if (¥, f) is a quotient,
then it is a categorical quotient.

1. A technical theorem.

THEOREM 1. Let X be an algebraic variety and let two algebraic groups G,
and G, act on X in such a way that those actions commute. Assume that there
exist categorical quotients (X/G,, a), ((X/G,)/G,, B). (X/G,, @). Then there
exists a categorical quotient ((X/G,)/G,, {) such that

(X/G,)/G, = (X/G)/G,.

Moreover, if (X/G,, @) and ((X/G,)/G,, B) are quotients, then ((X/G,)/G, ¥) is
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also a quotient, and if (X/G,, «) and ((X/G,)/G,, P) are geometric quotients and
G, is a linearly reductive group, then ((X/G,)/G, ¥) is also a geometric quotient.

Proof. Since foa: X —(X/G,)/G, is constant on G,-orbits, the diagram
X——X/G,

| Lol
X/G,  (X/G,)/G,

can be completed by the unique §: X/G,—(X/G,)/G, such that foa = Yoe.
One can show that ((X/G,)/G,, y) is a categorical quotient of X/G, by G,,
ie, ¥ is a G,-morphism with the universality property.
Now assume that (X/G,, @) and ((X/G,)/G,, B) are quotients. Then it can
be shown that s is an open morphism, y separates G,-orbits and for any open
subset U < (X/G,)/G, the induced homomorphism

y*: k[UI->k[y~ 1 (U)]"

is an isomorphism. Hence ((X/G,)/G,, ¥) is a quotient of X/G, by a G,-action.

Let us assume that (X/G,, a) and ((X/G,)/G,, B) are geometric quotients
and G, is a linearly reductive group. Then ¥ is an affine morphism. Indeed, let
A be an affine open subset of (X/G,)/G,. Then 4, = a~! B~ 1(A) is an affine
subset of X. The k-algebra k[A4,]¢ is finitely generated ([7], p. 183), so the set

V~'(4) = ¢(4,) = A,/G, = Speck[4,]%

is affine.
The proof of Theorem 1 is complete..

2. SL(2)-actions; the general situation. From now on G always.denotes
SL(2).

THEOREM 2. Let G = SL(2) act on a normal irreducible algebraic variety X.
Then there exist a connected subgroup H — G and a non-empty open subset
U c X such that xeU if and only if G~ H

Proof. All orbits of maximal dimension form a dense subset of X (see
[10]). We have four possibilities:

(@) There exists an orbit of dimension 3. Let U be the subset composed of
all 3-dimensional orbits. Then H = {e¢} and U satisfy the conclusion of the
theorem since

U=X\{xeX: dimG, > 1}
and, for any n, the set {xeX: dimG, > n} is closed (see [6], Part O in
Section 3).

(b) There is no 3-dimensional orbit and there exists an orbit of dimen-
sion 2. Let V be the subset composed of all 2-dimensional orbits. Then V is
dense in X. Moreover, V= X, . U X since, up to conjugation, k* and T are
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the only two 1-dimensional connected subgroups of SL(2) (see [8]). For
H=k"* or H= T we have

Xy = GX"\XP) = GX"\G(XP),
so X is constructible. X = V= X,. uX, and, by the irreducibility of X,
X=X,.0or X=X,.
(1) X = X,+.Since X, = {xeX: k* £G,} (see Theorem 3 in [4]), X+ is
composed of all 2-dimensional orbits, i.e.,
X,+ ={xeX: dimG, = 1}\{xeX: dimG, > 2}.

Hence X, - is locally closed, so H = k* and U = X, . satisfy the conclusion of
the theorem.
(2) X = X,. Since (again by Theorem 3 in [4])

Xr=({xeX: dimG, > 1}\{xe X: dimG, > 2})\X,.,
X ; is locally closed. Hence H = T and U = X satisfy the conclusion of the

theorem.

(c) The maximal dimension of orbits is equal to 1. Then H = B and
U = X satisfy the conclusion of the theorem (see Theorem 5 in [5]).

(d) The maximal dimension of orbits is equal to 0. Then the action is
trivial, so H = SL(2) and U = X satisfy the theorem.

We can also show the following theorem:

THEOREM 3. Let G = SL(2) act on a normal irreducible glgebraic variety
X without 3-dimensional orbits. Then there exist a subgroup H < G and
a non-empty open subset U — X such that xe U if and only if G, =~ H.

Proof. Parts (c) and (d) of the proof of the previous theorem give
Theorem 3 in the case of maximal dimension of orbits equal to 0 or 1.

Let us assume that the maximal dimension of orbits is equal to 2. Then
X,+ or X, is open in X.

(1) Let X,+ be open in X. We have

Xpo =) {xeX: G,=N,}.
neN

It can be shown that this sum is finite. Let k, < k, <... < k, be all positive
integers such that

{xeX: G,=N;,i=12,..s}#0
and
{xeX: G,=N,for n#k;,i=12,..s5}=0.

Since N, can be deformed to N, only if n|p (see Theorem 4 in [4]), H = N,,
and U = {xeX: G, = N,,} satisfy the conclusion of the theorem.
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(2) Let X, be open in X and let
Z={xeX: G, N(T)}.

Since there is no deformation of N(T) to T (see Theorem 6 in [4]), Z is a closed
subset of X ;. Let us take H=N(T)and U=Z if X;=Z or H=T and
U=X,\Z if X, \Z+#0.

Remark 2. In the case where X contains an affine non-empty G-invariant
open subset it follows from [9] that there exists an open subset U such that, for
any x, yeU, G, =G,.

3. Existence of quotients for SL(2)-actions without 3-dimensional orbits.
The goal of this paper is to investigate the existence of the quotient U/SL(2),
where U is described by Theorem 2. In the case of U = X+ it turns out that
the quotient of U may not exist but there exists a quotient of an open set V< U
which is complete (see Theorem 4).

By Theorem 2 there are five possibilities for H: SL(2), B, k*, T and {e}.
The case H = SL(2) is trivial. In the case of H = B (see Theorem 5 in [5]) all
orbits are projective, isomorphic to P!, and X is isomorphic to the product
P! x X%, In this section we discuss the cases H=k* and H=T.

Let G = SL(2) act on an irreducible normal variety X with the maximal
dimension of orbits equal to 2. For H=k* or H = T, the set

U=X,={xeX: G2= H}

is non-empty and open.
Let us define actions of G and N(H) on U¥ x G/H in the following way:

g(x, [h]) = (x, [gh]) and n(x, [h]) = (nx, [An"'])

for geG, ne N(H), xe U” and [h]eG/H. These actions are well defined.

Since H @ N(H) acts trivially on U¥ x G/H, the action of N(H) induces an
action of N(H)/H. Easy computations show that actions of G and N(H)/H
commute.

LEMMA. (a) Let a: U¥ x G/H—- U" be the projection. Then (UY, a) is
a quotient of U¥ x G/H by G.

(b) Let ¢: U8 x G/H — U be defined by ¢(x, [g]) = gx for any xe U¥ and
[g1e G/H. Then (U, ¢) is a quotient of U¥ x G/H by N(H)/H.

Proof. We shall prove (b) (the proof of (a) is obvious). ¢ is surjective,
constant on (N(H)/H)-orbits and separates (N(H)/H)-orbits. In fact, let

“o(xy, [9,]) = @(x,, [9,]) for x,, x,eU¥, [g,], [9,]€G/H.

Then nG2 n~! = G2, with n = g5 1g,. Since G, = H (i = 1, 2), we get nic N(H)
and

(x2, [9,]) = n(x,, [9,].
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Moreover, an easy computation shows that N(H)/H acts on U¥ x G/H
with all isotropy subgroups equal to {e}. Hence any two fibres of ¢ have the
same dimension equal to dim N (H)/H. The set U is normal as an open subset of
X. By A.G.184 in [3], ¢ is open and, by Theorem 6.6 in [3], (U, ¢) is
a quotient of U¥ x G/H by N(H)/H.

THEOREM 4. Let X be a smooth irreducible projective (resp., complete) variety
with an algebraic action of G = SL(2) such that

Xk*’ = {xeX: Gg = k+}
is dense in X. Then X, + is open in X and for some non-empty G-stable open

subset V< X, . there exists a quotient of V by G which is projective (resp.,
complete).

Remark 3. As Vone may take G(Y), where Yis the intersection of the set
(X,+)*" with the difference of the open cell of the (T= N(k*)/k*)-action on
X and XT.

Proof. In this situation we have N(k*) =B
U*" x G/kt —=— U*

go

where o and ¢ are defined in the Lemma, and B/k* acts on U*'. Since
T normalizes k*, U* is T-invariant. We have Bialynicki-Birula’s decom-
position of X determined by the induced action of T

x=Ux,

with T-invariant locally closed X; such-that each X; corresponds to exactly one
connected component F; of XT and F;c X, (see [1]) Since U*" « U < X\ X7,
we have

- yur,

where U¥" = U*" n(X\F), i=1,2,. . r. Fix ie{l, ..., r}.

U*" is a locally closed subset of U" since it can be written as a difference
of a locally closed U*" n X; and closed U*" N F,. Hence U*" xG/k* is
a locally clesed subset of U** x G/k*. It is also T1nvar1ant so it can be written
as a difference of two T-invariant closed subsets of U*" x G/k*. Since ¢ is open,
@(F) = U is closed for any closed T:stable subset F « U*" x G/k*. Hence
@(U*" x G/k*) is locally closed in U. Consequently, U is a finite sum of locally
closed subsets:

= () o(U*" x G/k*).
i=1
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v

One of these subsets, say V= ¢(U%¥" xG/k*), has to be open in U. We
have

UT" =UY n(X,\F) = X*" n(X,\F,)

(X,+ =X, so k* SG_ for any xe X, and X% = XT). U%" is a T-stable and
closed subset of X ,\F,.

There exists a geometric quotient of X,\F, by T ([12], Corollary 3).
Hence there exists also a geometric quotient of U%" by T which is closed in
(X,\F,)/T ([6], Proposition 1.9). If X is projective (resp., complete), then by the
results of Section 2 and Theorem 3.1 in [2] the quotient (X, \F,)/T is projective
(resp., complete) (X, \F, is identical to the sectional set corresponding to the
section A* = {F,}, A~ = {F,, ..., F,} in the terminology of [2]). Hence U%"/T
is also projective (resp., complete). We have

U xG/k* —— UY’

I I
V=oU* xG/k*) UY/T
where (U%", ®) and (¥, ¢) are quotients and (U%'/T; B) is the geometric

quotient. By Theorem 1 there exists a quotient (V/G, ¥) such that V/G = U%"/T.

PRrOBLEM (P 1378). Under the assumptions of Theorem 4 there are two
canonical decompositions of X for the torus T([1], Theorem 4.3), so there are
two open cells corresponding to them. Hence there exist two different open
subsets ¥, and ¥, for which V,/SL(2) exist and are projective (resp., complete).
Does there exist another such V for which V/SL(2) exists and is projective
(resp., complete)?

THEOREM 5. Let X be an irreducible normal variety with an algebraic action
of G = SL(2) such that

X;={xeX: G} T}

is dense in X. Then X 1 is open in X and there exists a geometric quotient of X ,
by G.
Proof. We have

UT x G/T—+— UT

I |
U

where « and ¢ are defined in the® Lemma and N(T)/T acts on UT. Since

T’={(g 178): 2=1}

6 — Colloquium Mathematicum LVIIL.2
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normalizes T, U” is T,-invariant. There exists a geometric quotient of U by T,
(a consequence of Theorem 1.3 and Proposition 0.8 in [6]). Let us denote it by
(UT/T,, P). Since G/Tis affine, a: UT x G/T— U7 is an affine morphism. Hence
(UT, @) is a geometric quotient by G. We have

UTx G/T———UT _
I I
U UT/T,

By Theorem -1 there exists a geometric quotient (U/G, y) such that
U/G=UT/T,.
Remark 4. We shall show (see Examples 1 and 2) that under the
assumptions of Theorem 5 nothing can be said about projectivity of X /SL(2).
We fix some notation. Let k(g;) be the vector space of homogeneous
polynomials of degree i in two variables x and y, with the SL(2)-action
determined by the following equalities:

g(x)=ax+cy and g(y)=bx+dy for g= (z Z)ESL(Z).

Let k(o;®0;) denote the direct sum of k(g,) and k(g;) with the direct sum of
SL(2)-actions on k(g;) and k(g)). By P(¢;® ¢;) we denote the projectivization of
the space k(o;® ;) with the projectivization of SL(2)-action.

ExaMmPLE 1. In P! = P(g, @ g,) let us take two projective lines P, and P,
such that

P, = {tx*y@sx*y*: (¢, 5) # (0, 0)},
P, = {txy* @ sx? y*: (¢, 5) # (0, 0)}.
For any peP, UP,, G,=T and, for any q¢ P, UP,, G, # T
Let U=SL22)(P,uP,) and X =U in P''. Then U = X, and, by
Theorem 5, there exists U/SL(2) = U”/T,. But UT = P, U P,. There is only
one element of order 2 in SL(2), namely —e, and it acts as e at points of
P, UP,. Hence UT/T, = UT is projective.
ExaMPLE 2. In P’ = P(g,®0,) let us take an affine line Y such that

Y= {s®x?y* sek}.

For any peY, G,= N(T) and, for any q¢Y, G, # N(T).

Let U = SL(2)(Y) and X = U in P5. Then U = X,. By Theorem §, there
exists U/SL(2) = UT/T,. But UT = Yand —e acts as e at points of Y. Hence
UT/T, = UT is affine.

I wish to thank Professor Andrzej Bialynicki-Birula for his help in the
preparation of this paper.
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