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NUMBER OF POLYNOMIALS IN ORDERED ALGEBRAS

BY

MILAN SEKANINA (BRNO)

Recently much work has been done in describing the number of
polynomials of a given arity in abstract algebras (see papers by members
of the seminar of Professor G. Griatzer in Winnipeg and of Professor
E. Marczewski in Wroclaw). Our paper* deals with this topic for ordered
algebras, especially with the following question: Given an ordered algebra
A, what can be said about the set S(U) of those n for which there exists
an n-ary polynomial in U depending on all variables.

It is proved (Theorem 3.5) that in the case where U is a bidirected
algebra, this set is one of the following types: {0,1,...,n}, {1,2,...,n},
{0,1,...,n,...}, 1,2,...,n,...}, {1, 3,4,5, ..., n, ...}. In proving this,
great use is made of Urbanik’s paper [6] describing the sets S(UA) for
idempotent algebras. Last section of our paper deals with linearly ordered
idempotent algebras without constants.

The supposition that algebras are bidirected is essential in our results.
If only directedness is assumed, then there is no restriction for the type
of S(A) (this result is a consequence of considerations about ordering
some algebras constructed by G. Gritzer, J. Plonka and A. Sekanina;
the proof will be given in a paper which is prepared in collaboration
with A. Sekanina).

-

I. GENERAL DEFINITIONS AND STATEMENTS

1.1. Definition. Let A = (A4; F) be an algebra in the sense of [3].
Let A be ordered by some order < (order is considered as a reflexive,
antisymmetric and transitive relation). Let every feF be isotone in every
variable, i.e. @,...,,, @ cd, = <@ imply f(@, ..., % ,...,3,) <
< f(@y, gy -y wéo’ veey Bp)

Then U is called an ordered algebra.

* Supported by National Research Council of Canada.
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We shall be mostly interested in the case where (4, <) is a bidirected
set, i.e. for every a, beAd there exist ¢, d such that ¢ << a,b<d. Then
A is called a bidirected algebra. A special case is if (4; <) is a chain, i.e.
every two elements are comparable.

1.2. ProOPOSITION. Let A be an ordered algebra. Then every polynomial
over W is isotone in all variables.

Proof is clear.

1.3. Definition. Let A be an algebra. Then p,(A) denotes the
number of all essentially n-ary polynomials in . S(A) is the set of all
those natural numbers (0 is considered as a natural number) for which
P.(U) # 0.

Let us emphasize that the identity mapping is considered as an
essentially unary polynomial for card A > 2.

II. S(A) FOR BIDIRECTED ALGEBRAS

2.1. PrROPOSITION. Let W be a bidirected algebra and f(xz,, ..., ,) be
a polynomial over W depending on a variable ;. Let 1 < 1) < 4, < ... < ik < n.
Then f(15 ..oy By ooy @y ...y @) (where @ stands in place of @, ..., x;, x;)
depends on .

Proof. Since f(2,,...,2,) depends on T there exist a,,..., a,, a;
such that f(ay,..., 4, ..., a,) #f(ay,...,0a;,...,a,). Choose the nota-
tion so that f(al, vy Qiy ey Gy) <f(a1, ey @iy uuy @) OT f(Byy ..., @,

a )lf(ay, ..., a, ..., a,) (a]|b means that the elements a and b are in-
compa,mble, i.e. nelther a < b nor b < a holds). As A is bidirected, there
exist b and ¢ such that b < al youes By Gy @ < 6. Then f(ay, ..., a;, ...,
Ay oony Bipy - )>f(a1,... yeeey by.eny @) (b stands for a;, ..., a;, @)
flaq, .. ’“11’ ) Y y Qipy ooy () <f(a1, ceey Cyuvny Cyunny @), SO, clearly,
flay, ...50y ..., c, ey a,,,) Ff(@yyeeesby.niyby.in, @)

2.2, Definition. Function with the property given in 2.1 will be
called dependence preserving.

Thus all polynomials in a bidirected algebra are dependence pre-
serving. The supposition of bidirectedness is essential as the following
simple example shows.

Let (4,<) be a three-element semilattice with a <e¢, b <c¢, alb.
Put f(a,b,a) = a and f(z,y,2) = ¢ otherwise. Then (4;f) is ordered,
f(x, vy, 2) depends on all three variables, but f(z, z,y) = c.

Note. Almost everything in the sequel is a consequence of the fact
that all polynomials in a bidirected algebra are dependence preserving.
Nevertheless, there exist algebras (4 ; F) in which every algebraic function
is dependence preserving but which are not orderable by directed order.
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For example, take a group @G of type p® and take as the algebra (4 ; F)
the reduct of G with the fundamental operation g(z, y) = v+ y (so neither
taking the opposite element nor zero is a polynomial over (A4; F)).
Then, clearly, every polynomial over (4; F) is a sum of type »,+...
eert2+@+...+25+...4+2,+...+2, and so dependence preserving,
but 0 cannot be comparable with any other element since every element
of G has a finite order. So the only ordering for the algebra (4; F) is the
trivial order (every two distinct elements are incomparable).

2.3. CorOLLARY OF 2.1. Let f(xy,...,2,) be an essentially n-ary
polynomial, n > 1, over a bidirected algebra. Then f(x, ..., x) ts not constant.

2.4. Definition. Let A be an algebra, f a polynomial over . Then
I(f) will denote the system of all polynomials over % which are obtainable
from f by some identifications of variables. For example, if f = f(x,,
&y, T3, %), then f(x, 2,9, 2), fy, 9, 2, v), f(», z, z, x) etc. belong to I(f).
By definition of algebraic operation, functions belonging to I(f) are
polynomials over 9.

2.5. LEMMA. Let A = (A; F) be a bidirected algebra, f an essentially
n-ary polynomial, n > 4. Then there exists an essentially (n—1)-ary poly-
nomial in I(f).

Proof. Let us identify two variables (say, w;, #;) in f(y, ..., 3,).
We get a polynomial from I(f) and denote it by f; ;. By 2.1, f;; is not
constant.

Assume that all functions f;; (under all possible choice of indices
i, j) depend -only on one (i.e. identified) variable. Then f, ,(#,) = f(x,,
Ly Tyy Byy ooy Bp) = F( @1y T1y By oevy Tny Bn) = fn_1,n(®), @ contradiction.

Therefore, let us choose our notation so that f(x, x,xs,...,2,)
depends on x, x;, %, ..., ¥, and every f;; depends on n—k-+2 or less
variables. If ¥ = 3, the proof is finished. Suppose ¥ > 3. Then:

(1) fleyz,..., 2, 2, ..., ®,) depends on x, 2y, ..., L,;
% —1times

2) f(@y, ®gy Tpy T4y ...y gy ..., @,) does not depend on z,
(by 2.1 and the assumption on k).

The function f(2, ®s, Ty sy oy By_1y iy By -y L) depends on
Xy Xgg1y --+9 &,. In fact, dependence of the function f(z, », x4, ..., ¥4_;,

Ly +oey &,) ON X, ..., z, and independence of the same function on
imply dependence of f(@,, Ty, Ty Tay ooy Ty Lrgy ooy Tp) OD Lpy oovy By
So f(wy, ®ey Tpy Tay ..oy @y, By ..., 4,) can depend at most on one of

the variables x,, z, (by choice of k).

Suppose our notation is chosen so that it does not depend on z,.
Then we have
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f(@y @y @gy ooy Tp_yy By ooy Ty)
=f(®, @, Ty Bay ooy Bp—1y Tigy o5 Ty)
= f(@y Tpy Tpy By ooy Bp—1y Biey ooy Ty)
= f(@py Try Ty Bay evvy Ty Dpy oo vy Tp)
(the first equality because f(x, x, @4, ..., #,) does not depend on w,, the
second — a8 f(®, gy Ty Ty ovvy Ty_1y Tgy -.-y &,) does not depend on z,,
the third — by (2)). Thus f(z, z, 2, ..., ©,) does not depend on x, a con-
tradiction.
2.6. COROLLARY. Let U be a bidirected algebra containing an essentially
n-ary polynomial for some n > 3. Then {3, 4, ...,n} = S(U).
2.7. LEMMA. Let 2 ¢S(N), 38 (A) for some bidirected algebra . Then
neS(A) for all n > 3.

Proof. Let f(x,,,,2;) be some essentially ternary polynomial
over UA. Write g(z) = f(x, z, ). By 2.3, g(x) is not constant. We have

(3) flz,z,y) =f(®,y,2) =fly, 2, x) = g(x).
First we prove
(4) f(wn @y f (s, 374’{”5)) depends on @, ;.

Assume that f(z,, @,, f(2, %, #5)) does not depend on x,; then
f(wl’ @gy f (X3, T4, ws)) = f(f(may Tyy XTg)y Tz, f(2sy T4, CI/‘5)) = g(f(ms’ Ty wﬁ))'

So f(acl, Doy (3, 4, a:5)) does not depend on z,, but then f(wl, o, (25,
Bay ) = f(w1, @1, f(@5, @, ) = g(1), & contradiction.
Similarly, the dependence on @, of f(2,, ®., f(%s, #,, #5)) can be proved.
Having proved (4) we deduce that

(5) f(21, @2y f(#y, %41, #,)) depends on #, and so not on x,.

Thus
g(x,) =f(m17 X1y f(®yy 2y, 371)) = f(wuf(“f'n @1y T1); [(21, @4, “’1)) = g(g(wl)).
Hence
(6) g(x) = g(g(2)).
Take now a complete iteration (see [4]) of f:
(1) (1 ey @)
= F(F(FC D TG P TGy £y T FFC D £ ) FC-0)-

We shall prove that f*(xy, ..., #,,) depends on all variables.

In the first place, f"(y,...,®,) is not constant as (z,...,x)
= g(g(g(...))) = g(x) by (6). Let f*(2,,..., 2,,) depend on some variable
which occursin f(wy,, .., %, ,) contained in expression (7) for f*(@y,...,%,,)-
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We shall show thatf" (zy,...,,,) depends on all variables @y, @y, , Tp4s -

Assume it depends only on ;. Then g(w;,,) = f(@, ¥4, ¥;,,) and
after the substitution of @, , for x,,, in the right-hand side of (7) (which
we can do since f*(y, ..., 2,,) does not depend on z,,), it follows that
" (@, ..., 2,,) does not depend on .

Assume f*(#y,...,®,,) depends on x, @,,, but not on x,,,. Then
f(@ry Ziyy Trpy) = 9(2,,), and substituting this in the right-hand side of
(7) for f(@yy Bpy1) Ty2) We see that f*(zy, ..., z,,) does not depend on ;.

Formally we can write (7) as

(8) f(f( f(fk(wly Loy veey w3k)7fk(“73k+1’ ) m2.3k)’fk(w2.3k+1’ RE) w3.3k))7

f(fk (w3.3k+17 e $4.3k) y . ') P EERY) fk (w(3n—k_1).3k+17 ¢ w;.yn))) I

-

where 1 < k < n.

Suppose we have proved
(9) If f*(«,,...,®,) depends on one variable from = _; ,..., By )oak >
then f(,, ..., #,,) depends on all of them.

For k =1 this assertion is the same as that just proved above.
So let us prove (9) for k1. .

Assume for example that f"(=, ..., s,,) depends on z,, ..., z,; and
not on Xy, 1y ...y &, - Thenput o, =2, 5 ...y &, =, ; and substi-
tute this in the right-hand side of (8) (we can do this without a change
of the left-hand side). But then

f(fk(wu ceey m3k)1fk($2.3k+l, ey @y k) fk(w2.3k+17 ey wa.ak))

= g(fk(m2.3k+1’ LREY w3.3k))

80 f*(#y, ..., #,,) does not depend on x,, ..., ,, a contradiction.
It follows by induction that f"(z,, ..., ) depends on all variables.
Our assertion 2.7 is now a consequence of 2.6.

2.8. COROLLARY OF 2.6 AND 2.7. Therefore S(U) must be one of the
following types:

(10) S(A) ={0,1,2,...,n};
(11) SA) ={1,2,...,n};
(12) S(A) ={0,1,2,...};
(13) S ={1,2,...};

(14) S ={0,1,3,4,...};

(15) SN ={1,3,4,...}.
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Assume that a bidirected algebra U fulfils (14). Let f(x, ¥, 2) be an
-essentially ternary polynomial of % and a an algebraic constant of U.
Then f(z, ¥, a) is a polynomial in A. Assume it does not depend on .
Then (because f(z, y, 2) is dependence preserving) f(y,v,y) = f(y, ¥, a)
= f(a, 9y, a) = f(a, a, a), a contradiction to 2.3. Similarly dependence
on y can be proved. ’

We shall prove in the next section that (10)-(13) and (15) can really
oceur.

III. IDEMPOTENT ALGEBRAS

An algebra U is called idempotent if for every polynomial f(z,, ..., x,)
over A, which is not a constant, f(z,...,2) = .

In Urbanik’s paper [6] the S () are described for idempotent algebras
without constants (notice that Urbanik does not include 1 in S()).

In our notation Urbanik’s theorem 1 reads as follows:

For each idempotent algebra WA one of the following cases holds:

(i) S = {1}

(ii) S ={1,3,5,...,2n+1,...};

(ii) S ={1,2,3,...,n}, n=>2;

(iv) S ={1,m,m+1,m+2,...}, m=2;

(v) S ={1,3,5,...,2n+1,...} U{m,m+1,...}, m=5.
(vi) S ={1,2,3,...,n}u{m,m+1,m+2,...}, m>n+l, n=>2.

In our case, in view of 2.8, we are only interested in the cases (i),
(iii) and (iv) of Urbanik’s theorem. From (iv) there remain for us only
cases where m < 3.

Case (i) concerns with a trivial algebra. Every such algebra can be

considered as a chain.
By Theorem 2.2 in [6], case (iii) concerns with diagonal algebras.

The next assertion describes all ordered diagonal algebras.

3.1. ProOPOSITION. Let (A;f) be an ordered m-dimensional diagonal
algebra, A =B, X ... X B,. Then there exist orders on By,...,B, such that
A 18 the cardinal product (see [1], p. 55) of B,, ..., B,. Conversely, given
arbitrary orders on B,,..., B,, and taking A as the cardinal product of
By, ..., B,, (4;f) is an ordered algebra.

Proof. Let (A;f) be an ordered n-dimensional diagonal algebra.
Let < denote the order of A. Let

(16) <w1""’mn>,<<y1’“'7yn>'
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Then for arbitrary <{zj,..., @), ..., <& Y ..., 2% YA we have

f((mi’ -"7w11z>’ ceey <“"1—17 ceey w3_1>’ {Byy eeny T))
<f(<x}, "'7$'}1>’ ceey <m1_17 -'-7'77;:—1>’ Y1y oeny Yn))y
SO ’

17) By ooey B0 B> < KBy ooy B0y Yn)

Thus (16) implies (17) for arbitrary «jeB,, ..., 2" 1eB,_,. If (17) is
true we write z, <, ¥,

Since < is an order on A, <, is an order on B, . Similarly, <; is defined
fors =1,2,...,n—1. By definition, (16) implies #; <, 9, for¢< =1, ..., n.

Conversely, let »; <;y; for ¢« =1,...,n. Let z,¢B;, 2 =1,...,n, be
.quite arbitrary. Then

{18) CRuy eees i1y Ly Bipny veey B) SRy ooey By Yiy Ripry oevy Zp)e

Then substituting in the operation f the right-hand sides and left-hand
sides of (18) for ¢ =1,...,n, we get {(Ty, ..., %,> < Yyy evey Yp)-

Conversely, let 3, be some order of B;,7? =1,...,n. Let A be the
cardinal product of B;. Denote the resulting order on A as <. Assume

(19) <w;:7""w;:‘b><<y'l'.:""7yi>’ ’l::l’""n'

(19) implies «} 3,9 for ¢ =1,...,n. Therefore (ai,..., o> <
{Y1y+++3 Yny. But

f((mia -“am:;>7 seey <w?7 ey Tpy) = <y, ey Tp)s

TYLy ees Unds ooy YTy ey Yn) = Y1y ooy Yny-

This shows
Tty ooy By eeey ATy ooy Td) SF(YLy oves YnDs oees YTy oves Yn2)-

Therefore (A;f) is an ordered algebra.

Note. Taking <;in the first part of the proof as 3, we get the
original order on A.

For the order <, defined in the second part of the proof, <; coincides
with 3,.

3.2. COROLLARY. Let A = (A; F) be an n-dimensional diagonal algebra,
n > 2. Then A cannot be linearly ordered (i.e. ordered in a chain).

Case (iv) in Urbanik’s theorem for m = 2 is a general one. An example
is a chain having at least two elements with max(wx,y) as a fun-
damental operation. We shall now be interested in the case where
S =1{1,3,4,5,...}.
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3.3. PROPOSITION. Let S be a lattice containing at least two elements.
Let f(x,y,2) =(@vyyA(@va)a(yvz and A = (S;f). Then S(A)
={1,3,4,5,...}.

Proof. f(x, v, 2) is clearly essentially ternary, idempotent and isotone
in each variable. By 2.8, it is sufficient to prove that 2 ¢S (). Assume
that a polynomial symbol F(x,,...,x,) (for the notion of polynomial
symbol see [2]) for A gives a function which is essentially binary. Let
the corresponding function depend on x,, #,. Calculation of F(x,,...,2,)
is obtained by calculations of expressions of the following types:

F(f W15 Y25 Ys) Yas Ys) s
f(f(?/la Y25 Ya)s [ (Yas Ysy Ye), ?/7)7
f(f(?/n Yoy Ya)y F(Yas Yss Ye)y F(Yay Vs, ?/9))

and obvious modifications of these. But keeping in mind that we have
a function depending only on z,, x,, we ascertain that every one of these
expressions is equal to f(«,,a,,x;) or f(x,,2,,x,) or f(x,, z,,x,) or
f(zy, ., x,) or to an expression obtained from these after the interchanging
of x, for x,. So as a final result we get x, or x,, a contradiction. Therefore
SA) =1{1,3,4,...}.

For chains we shall prove later the statement converse to 3.3. Recall
that f defined in 3.3 is called a median on S (see [1]).

Now in order to prove that the types of S(¥) given by (10)-(13)
and (15) can really occur, it remains to prove the following proposi-
tion:

3.4. LEMMA. Let A be an algebra which does not contain an essentially
m-ary polynomial with m > n, (n, a given integer). Add to A as & new polyno-
mial a constant a. There are no polynomials of arity m > n, in the new
algebra B. '

Proof. We shall prove:

Every polynomial f(x,,...,x,) over B is of type g(xyy...,x,, a),
where g is a polynomial over .

Let F(zy,...,x,) be a polynomial symbol giving f(z,,...,,). For
every occurrence of a put a new variable z,,,. In this way we obtain
a new polynomial symbol G(x,,...,%,,,) over A. Let g(=,, ..., x,,,) be
determined by G(xy, ..., x,,,). Then g(x,, ..., %, a) = f(@;, ..., T,).

Thus, by 3.4 and the representability of (11) by diagonal algebras,
we get the representability of (10). Let us formulate our result in the
following statement:

3.5. MAIN THEOREM. The types of S(A) given by (10)-(13) and (15)
are the only possible types and for each of them there exists a bidirected algebra
A with S(A) of that form.
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IV. ON IDEMPOTENT ALGEBRAS W WITHOUT CONSTANTS WHIOCH ARE
LINEARLY ORDERED AND FOR WHICH S(%) ={1,3,4,...}

4.1. LEMMA. Let f be the median on a chain S. Then f(x,, x,, x3) is
the element from x,, x,, x3 which is between (in the sense of <) the other two.

We shall prove

4.2. PrROPOSITION. Let U = (A; F) be a linearly ordered idempotent
algebra without constants for which S(W) = {1, 3, 4, ...}. Let f be the median
on A. Then A = (4;f).

The proof will be accomplished by means of several lemmas. In all
of them A fulfils the suppositions of 4.2.

4.3. LEMMA. Let g(x, y, 2) be an essentially ternary polynomial over N.
Then g(»,y,2) = f(@,y, 2).

Proof. Let a <b <c¢. Then a<g(a,b,c)<g(b,b,c) =b,c>g(a,
b,c)>g(a,b,b) =b. So g(a,b,c) = b. Similar results can be obtained
for other permutations of a, b, c. .

Further, g(», x, x) = g(2,»,y) = g(@,y,x) =g(y, %, ) =, so in-
deed f = g.

4.4. LEMMA. Let g be a polynomial over W, g(a,, ayy...,a,) = a,,
where a, < a; < ... < a,. Let j be the first index for which a; > a,. Then
9@, ..., 2,2, ..., x,) does not depend on x;,...,x, (s0 g(z,..., 2, x;, ...

e —
j—1 times
ceey &) = T).
Proof. Assume that g(z,...,#,%;,...,%,) depends on a variable
from «;, ..., #,. Then j—1 times
g(@y .0y @,y Y,...,9) =Y.
——
7—1 times
But a, = g(a,, ..., ay, @, ...,0,)>9(ay, ..., a,, a;, ..., a;) =a;, acon-

tradiction.
4.5. LEMMA. Let g be a polynomial over A. Then

g(a’l’ ceey an)e{a'u ey a’n}'

Proof. This is clearly true if g is unary. Suppose it is true for all
m less than given » > 1. For that reason we need deal only with the
case where a,,...,a, are different. We can suppose that a, <... <a,
and that g is essentially n-ary. Then '

(20) a; = g(ary ..., a4;) < g(ay,y ..., a,) < g(ay,, ..., a,) = a,.

Put b = g(a,, ..., a,). Suppose our assertion is not true. Then there
exists a j such that a; <b <a;,,.
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Assume j > 2.
Take the function g(=,...,x, %, ..., 2,). Then
7 times

GOy oy Oy Bigy oeey @) SO g(a, onny @y @50,y @)
As the arity of g(x,x,...,2,%,,,...,,) is less than n, we have
(21) G(Bry ooy @1y yigy ooy @) = @y,
(22) G(Wiy ooy Oy Bipyyoony By) = 5y,

(21) implies, in view of 4.4, g(»,..., %, %;,,,...,,) = ®. This con-
tradicts (22). '

If j =1, we proceed dually.

4.6. LEMMA. Let g(x,,...,%,) be a polynomial over A. Let a, < a,
Keee <Ky by < by < ... < b, and let any equality a; = a; imply b, = b,.
Then g(ay, ..., a,) = a, tmplies g(by, ..., b,) = b,.

Proof. In view of 4.4, the assertion is true if ¥ = 1 or k = n. Let
us suppose 1 < k < n. The assertion is trivial for unary functions. Suppose.
g(@y,y ..., @) is essentially n-ary, » >1, and @, < a, < ... < a, (otherwise
we can deal with a function of less arity).

We shall prove that g(x,,...,%,9,2,...,2) depends on x, ¥, 2.

k—1 times
Because ¢(z,, 5, ...,%,) 1 dependence preserving, g(z,...,%,¥,
2, ..., 2) depends on x or z. k—1 times

Let it depend only on z. Then g¢g(z,...,%,%,2,...,2) =2, but
G(Brgy ooey Mgy Qpy By ooy Gy) 2> A >y _y. S0 g(2,...,2,9,2,...,2) de-
pends on x, y, z. The proof is similar for dependence on z.

Suppose ¢(by, ..., b,) = b, # b,,. Suppose e.g. k <l (the second case
is dual). Then g(by_yy -+-y bp_15 bis bpy -y b,) = by, so, by 4.5, g(b,_,, ..
ceey by 1y by byy ..oy b)) =0, . In view of the theorem dual to 4.4, g(z,,
ceey Ly By ...y 2) =2, & contradiction to the fact that g(x,...,2,y,2,...,2)
depends on z, v, 2. k—1 times

4.7. LEMMA. Let g be a polynomial over . Let a, < ay, < ...< a,,
by=>b,>...20b, and let any equality a, = a; imply b, = b;. Then
g(ay, ..., a,) = a, tmplies g(by,..., b,) = b,.

Proof. Just as above we can suppose that g(z,, ..., x,) is essentially
n-ary, a, <...<a, and 1 #k #n. By the same method as in 4.6,
gz, z,...,2,9,2,...,2) is essentially ternary.

Tk—1 times

Assume ¢(by, ..., b,) = b, 5 b,. Suppose again k <l. Then g(b,_,,..-
ceey bp_yy by by ...y b,) =0,, which gives a contradiction as in the end
of the proof of 4.6.
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Polynomials satisfying 4.5 are called quasitrivial ([3]), polynomials
satisfying 4.6 will be called transferable and polynomials with the property
given in 4.7 will be called convertible.

The following assertion is clear:

4.8. LEMMA. Every subset of U is a subalgebra of . In every subalgebra
of A every polynomial is dependence preserving, quasitrivial, transferable
and convertible.

4.9. LEMMA. Let B be a subalgebra of . Then p,(B) = 0.

Proof. Let g(,, #,, ..., ®,) be an essentially n-ary polynomial over
A which depends as a function over B only on two variables, say on ,, x,.
Clearly, n > 3.

Take some a,beB. Then ¢ =g(a,b,a,...,a) =g(a,b,b,...,b)
= b, so card B = 1. Thus ¢g(2,, ..., ,) cannot depend on two variables
on B.

Take in the sequel two elements 0,1ed,0 <1 and let B be the
subalgebra of U on {0, 1}.

Write 0’ =1,1" = 0. Then, by 4.7 (adopting suitable notation
concerning variables and polynomial symbol), for x,...,x,e{0,1} we
have

9(@5 ooy @) = (9(B1y .-y 7))
g(0,...,0) =0

for every polynomial g of .

Therefore, g is homogeneous on B in the sence of paper [5], p. 200.
By [5] there are only three non-trivial algebras on {0, 1} in which all
polynomials are homogeneous: the Post algebras P« , P*, P. But funda-
metal operations for P, and P are not dependence preserving. Conse-
quently, if we prove that B is not trivial, we have 8 = P$*, s0 B = ({0, 1};
f1{0,1}) (f is the median on A). Nontriviality of B is an immediate
consequence of the following assertion 4.10. For simplicity, if ¢ is a poly-
nomial over U, then § = ¢|{0, 1} means restriction of g to {0,1}. In
particular, f is the median on {0, 1}.

4.10. LEMMA. Let g, h be two different polynomials over A. Then § +h.

Proof. Let g(a,, a,,...,a,) = a;, # & = h(a,,...,a,). We can sup-
pose that a,<a,<...<a,,4,<a (so 1<j) and a; #a;,. Then
G(Byyeony @y By ooy Biyy) < Gy SO G(Byy oeny Byy Gy vy Biyy) = @y 204,
therefore, g(z,...,2,y,...,y) = 2. '

—
1 times ] ’

Similarly, k(a;,...,a,a,,...,a,) =a,,s0h(2,...,2,9,...,9) =y. Thus

—— — ——
¢ times 1 times

g(0,...,0,1,...,1) =0 #1 = h(0,...,0,1,...,1). So § #h.

N ! r— —
1 times 1 times
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~ 4.11. Proof of 4.2. Let g be a polynomial over U. Let F(z,, ..., ,)
be a polynomial symbol in f yielding §. Then the same polynomial symbol
in f gives some polynomial h over U with 2 = §. By 4.10, b = g. Therefore
A = (45 ).
PROBLEM. Is 4.2 valid in the case where the order on A4 is (only)
assumed to be that of a distributive lattice? (P 703).

Let us formulate the concluding theorem concerning linearly ordered
idempotent algebras without constants:

4.12. Let N be a linearly ordered idempotent algebra without constants.
There are three possibilities:

1. A is trivial and S(A) = {1}.

2. A = (A;f), where f is the median and S(A) = {1,3,4,5,...}.

3. S(A) ={1,2,3,4,5,...} '

REFERENCES

{11 G. Birkhoff, Lattice theory, American Mathematical Society, 1967.

[2] G. Griatzer, Universal algebra, Princeton, N. J., 1968.

{8] E. Marczewski, Independence in abstract algebras. Resulls and problems,
Colloquium Mathematicum 14 (1966), p. 169-188.

[4]1 — Remarks on symmetrical and quasi-symmetrical operations. Bulletin de I'Aca-
démie Polonaise des Sciences, Série des sciences mathématiques, astronomiques
et physiques, 12 (1964), p. 735-737.

{5] — and K. Urbanik, Abstract algebras in which all elements are independent,
Colloquium Mathematicum 9 (1962), p. 199-207.

[6] K. Urbanik, On algebraic operations in idempotent algebras, ibidem 13 (1965),
p. 129-157.

Re¢u par la Rédaction le 23. 9. 1969



