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Preliminaries. The ordinals are defined in such a way that an ordinal is the
set of smaller ordinals. A cardinal is an ordinal not in one-to-one correspon-
dence with any smaller ordinal. The cofinality of a cardinal «, denoted by cf(a),
is the least cardinal § such that a is a cardinal sum of f-many cardinals, each
smaller than a.

A cardinal « is regular if a = cf(a), and singular otherwise. We denote by
a* the least cardinal which is strictly greater than «, and by w the first infinite
cardinal.

If o and B are cardinals, we denote by af the cardinal sum ) o

The cardinality of a set A is denoted by |A4|. We denote by 2,(A4) tl‘;e ‘;et of
those subsets of 4 that have cardinality less than o, and by 2(A) the set of all
subsets ‘of A.

Let a and x be cardinals. We say that « is strongly x-inaccessible if p* < o
for every B <a and A < x. If, in addition, a > x, we write a > x.

For set-theoretic background we refer the reader to [4].

0.1. THEOREM (Erdds-Rado).. Let « > w be a regular cardinal and
{Ng: ¢ <a} c P, ().
Then there are A — a, with |A| =a, and N < a such that
Ne{nNNgy,=N  for £, ¢,e4, & #¢,.
0.2. PrROPOSITION. Let a, B be cardinals, o > B = w™, let
| Upé<a)cPy@) and (Ng E<o} c 2()

with Ny N, = O for every £ <n <a. Then there exists A < a, with |A| = a,
such that

N.nJ,=9 for every &, neAd, & #n.

The above proposition in the case f = w™ is contained in [1]. To prove it
we use the Hajnal free set theorem.
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All topological spaces in this paper are assumed to be infinite and
Hausdorff. Let X be a topological space and « an infinite cardinal. We say that
X has precaliber o. if every family {U,: ¢ < a} of non-empty open subsets of
X contains a subfamily with the same cardinality and the finite intersection
property.

If X has precaliber a, then cf(x) > w (Corollary 2.25 in [5]). X is said to
have caliber o if every family {U,: £ <a} of non-empty open subsets of
X contains a subfamily of the same cardinality with non-empty intersection.

The Souslin number S(X) of X is defined to be the smallest cardinal « such
that there is no family of a-many pairwise disjoint non-empty open subsets of X.
By the Erdos-Tarski theorem, S(X) is an uncountable regular cardinal.

X is called pseudo-a-compact if for every family of a-many non-empty open
subsets of X there exists xe X such that every neighbourhood of x meets
infinitely many sets from the family.

We set

r(X) = min{a: X is pseudo-a-compact},
ca(X) = min{a: X has caliber a}.
Then it is clear that
r(X) < ca(X) <d(X)*,

where d(X) is the density character of X.

All Banach spaces in this paper are assumed to be real. Let X be
a topological space. By C*(X) we denote the Banach space of all real-valued
bounded continuous functions on X with the supremum norm. If Y is a Banach
space and o« a cardinal, we say that I, () embeds universally in Y if for any
closed subspace Z of Y, with dim Z = a, there exists an isomorphic embedding
of I, (x) into Z. It is clear that an isomorphic embedding of /, («) into Z exists iff
there exist a uniformly bounded family {z,: { < a} = Z and a constant M > 0
such that

n n
| 2 cizell =M 3 led
i=1 i=1

for all ¢,,...,c,€R, &,,..., &, < a pairwise different and for each ne N. Such
a family is said to be equivalent to the usual basis {e,: ¢ < a} of I;(«), where
e:(n) =0 for ¢ #n and e.({) = 1.

Let X be a set and {(A,, B): iel} be a family of subsets of X with the
property A;,n B, = for iel. The above family jis called independent if for
every pair of finite disjoint subsets K, F of I we have

(Q{AJ(\(QB;) #9.

The connection between independent families of sets and the isomorphic
embedding of /, («) into subspaces of spaces of the form C*(X) is described by
the following lemma, due to Rosenthal [9].
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03. LEMMA. Let X be a set and {f;: icl} a family of uniformly bounded
real functions on X. Let also r, 6 be real numbers with 6 > 0 such that if

A, ={xeX: filx)>r+d}, B;,={xeX: filx)<r},

then the family {(A;, B): i€l} is independent. Then the following inequality is
valid:

n 6 n
| X efill = 2 Y lej
j=1 j=1

for every c,,...,c,€R, i,,...,i,el pairwise different and each neN.
If (X))ies is a family of topological spaces and fe C*(]] X;), we say that

iel

f depends only on J < I if for each x, ye[] X; with pr,(x) = pr,(y) we have

iel
Sx) =1
If J< |, it is clear that C*(]] X,) embeds isometrically in C*([] X))
ieJ iel
Let (Z,);; be a family of Banach spaces. By () @®Z,),, we denote the Banach
iel
space

{z = (2)ier: z:€Z; and sup ||z;]| < + o0}

iel

with the norm

lzll = sup Iz
iel

1.1. DerFINITION. Let (X));; be a family of topological spaces and
X =[]x.
iel

For every cardinal o let
C2(X) = {f € C*(X): there exists J€P,(I) such that f depends only on J}.
We set
I(X) = min{a: C*(X)=C*(X)}, k(X)=min{a: CXX) = C*(X)}.
i.2. Remarks. (i) It is clear that
I(X) < k(X) < I(X)*,

and if cf(/(X)) > w, then k(X) = I(X).
(i) If X; is a compact topological space for every iel, then, by the
Stone—Weierstrass theorem, /(X) = w.

(iii) From [3] we have k(X) < r(X)*.
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1.3. THEOREM. Let a be a cardinal with a > w™. Let (X;)icr be a family of
topological spaces and

X=l_IXi'
iel

We suppose that X has precaliber « and a > k(X). If Z is a closed subspace of
C*(X) and if, for every JeP,(I), Z is not contained in C*([]X,), then

ieJ
Z contains isomorphically a copy of 1, ().

Proof. For every f € Z there is a J . € P x,(I) such that f depends only on

J;. Without loss of generality we may assume that
I = U J I
ez
By transfinite induction, we may construct a family
{fré<alcZ,
with || f,| =1, such that if we set
Jpp=J; and T,=UJ,
$<n

then f, does not depend only on T;, hence J, ¢ T,. We distinguish two cases:

Case I. There exists an A < o, with |4| = &, such that

T,nJ,#9 for all neA.

Since X has precaliber a, we have cf(x) > . Hence there exist 4, < A, with
|A,] = &, and rational numbers r, 6 with é > 0 such that the set

A= {xe [1X;:: sup{f,(2): ze{x}x [] Xi}
ieJ, ieJ;,

>r+6>r>inf{f,(2): ze{x} x [] X"}}

iel\J;,
is non-empty for every ne A,, where J, = T, nJ,. It is clear that A, is an open
subset of [] X;. We set N, = J,\T,. Clearly, N,n N, = @ for every n, (€ A,.

iel,
By Proposit'ion 0.2 there exists A, = 4, with |4,| = a, such that J,n N, =0
for every & neAd, with £ #n. We set

M,=4,x [] X.
iel\J;,
Since X has precaliber «, there exists 4, < 4,, with |4,] = «, such that the
family {M,: ne A,} has the finite intersection property. Let
B,={xeX: fy(x)>r+6}, C,={xeX: f(x)<r}

for every néA3. Clearly, B, and C, are not empty. We will see that the above
family is independent.
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Let F and G be finite disjoint subsets of A,. Then there is
ze () M,.
neFuG
We set z, = pr,,(z,). There exists
we Il X
iel\J;,
such that f(z,, y,) >r+d if neF and f,(z,, y,) <r if neG. We consider
xe[] X; such that

iel
pry(x)=z, and pry (x)=pry, (¥,

for every ne F U G (such an x exists, since J,n N, = O for every &, ne A, with
¢ # n). Since f,(x) = f,(z,, y,) for ne F U G, we have

xe(()B) ()€

Thus by Lemma 0.3 the family {f,: ne 4,} is equivalent to the usual basis of
L ().

Case II. Case I does not hold. Then there exists A < a, |4A| = «, such that
J,NnT,=9 for all neA. Then, as in case I, we can find an 4, < 4, with
|4,| = a, such that {f,: neA,} is equivalent to the usual basis of I, (a).

1.4. THEOREM. Let (X,)ic; be a family of topological spaces, let
X=J]X;, and IX)=o.

iel
We suppose that, for each i€ I, X, has precaliber o* and C*([] X)) is separable
ieF

for every Fe 2 (I). Then, if C*(X) is non-separable, |,(w™) embeds universally
in C*(X).

Proof. Let Z be a closed. subspace of C*(X) with dimZ = w™*, and
0 < 9 < 1. There exists a family {f;: { < @'} = Z with ||f,| = 1 and || f;— £,
> 9 for every E <n<w”. '

For every ¢ <w™ there is a g,e C*(X) such that

lge— fell < /20
and g, depends only on a set J, with |/, <. It is clear that
lg:—g,ll >98/10 for every { <n<ow?*.
By Theorem 0.1 there is an 4 c w*, with |[4] = w*, and a J < I such that
JenJ,=J for every {, neA with ¢ #n.
We have that C*(][ ] X)) is separable. Hence we may suppose that J # J, for
ieJ

every (e A. We distinguish two cases.
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Case L. Let J # @. Then there exist 4, c A4, with |4,| = ®™, and reR
such that A, # @ for every (€ A,, where

A= {xegx,.: sup{g,(2): ze{x} xieI;!JX,}

>r+9/8 >r > inf{g,(z): ze{x}x [] Xl-}}.

iel\J

It is clear that A, is an open subset of [ | X;. Since X has precaliber w*, it is
ieJ
easy to sce that [] X; has precaliber w*, hence there is an A, < 4,, with
ieJ
|A,l = w*, such that the family {4, £€A,} has the finite intersection
property. We set

B, ={xeX: gJx)>r+9/8}, C,={xeX: gix)<r}

for every £ € A. It is easy to see that the family {(B,, C,): £€ A,} is independent,
and so by Lemma 0.3 we have

| 3 cigell > 316) ¥ e

forevery &,,..., &,€ A, pairwise different, c,,...,c,€ R and ne N. Thus we have

| Z, cifull = (9/20) z lcd

for every &,,..., £,€ A, pairwise different, c,,..., c,e R and ne N. Thus the
family {f,: £€ A,} is equivalent to the usual basis of /,(a).

CaselIl Let J = @. Then, as in case I, we find A, < 4, with |4,| = &, such
that the family {f,: {€A4,} is equivalent to the usual basis of /,(a).

LS. LEMMA. Let (X))ic; be a family of topological spaces and
X =[]xX.

iel
Then C*(X) can be embedded isometrically in

( Z ec*(nxi))oo'

AeP(I) ied

Proof. Let x ‘= (x;),; be an element of X and take the function
T: c*X)»( ¥ @®c*[]X)).
. AeP () ied
such that T(f) = (f)ses.a)> Where
fo: [1Xi»R, f,(x)=f(y), where y,=x, for i€,
ieAd )

and y; = x; for ie I\ A. It is easy to see that T is a well-defined linear isometry.
Combining Theorems 1.3 and 1.4 yields the following general corollary:
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1.6. COROLLARY. Let a be a cardinal. Let (X );c; be a family of topological
spaces and
X = ]—[ X i
iel
We suppose that X has precaliber a, a > I(X), and B*® < a for every p < a. We
also suppose that
(%) a > sup{dim C*([[ X,): Fe2,(I)}.
ieF
If dim C*(X) > a, then l,(2) embeds universally in C*(X).
Proof. Since X has precaliber a, we have cf(a) > w.
If « = w*, then the corollary reduces to Theorem 1.4. Let > w* and Z be
a closed linear subspace of C*(X) with dimZ > a. We will prove that the
conditions of Theorem 1.3 are valid.
If I(X)= o, then k(X) < 0" <o
If I(X)> o and cf(I(X)) > o, then k(X)=I(X) <.
If I(X)> o and cf(I(X)) = o, then

a > [(X)® > [(X)F00 > |(X),

s0 k(X) < a.
We suppose that there exists Je2,(I) such that

dim C*(J] X)) = a.
ieJ
Then, if 0 < 8 < 1, there exists a family
{fit ¢ <a} = C¥]]X)
ieJ
with || fe| =1 and || f,— f,|| = 3 for every £ < < a. Without loss of generality

we may assume that f, depends only on J, = J with |J,| < I(X) for all { <a.
There exists a regular cardinal f such that

az=p> Y,
B >dimC*([][ X)) for every Fe#,(J) and B > I(X).
ieF
Then there are a J' = J and an A < a, with |4]| = B, such that J, = J' for every
¢ e A. Consequently,
dim C*( n X)= 8.
ieJ’
From Lemma 1.5 we have

p < dim C*([] X)) < sup{dimC*([[X)’": Fe2,(J)} <8,
ieJ’ ieF

which is a contradiction. Thus, for Z, the conditions of Theorem 1.3 are valid.
Therefore I,(2) embeds isomorphically into Z.
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1.7. Remark. It is clear from the proof of Corollary 1.6 that when « is
a regular cardinal, then condition (*) may be weakened to:

a>dimC*([[X,) for every Fe2,(I).
ieF

1.8. COROLLARY. Let a be a cardinal. Let also (X ;);c; be a family of compact
topological spaces and

x =[] x.

iel

We suppose that X; has caliber a for every i€l and
o> sﬁp{w(Xi): iel},

where w(X ) is the topological weight of X;. If dim C*(X) > a, then l,(a) embeds
universally in C*(X).

1.9. Remarks. (i) In the case of a regular cardinal & we need only the
condition « > w(X,) for every iel, as in Corollary 1.6.

(ii) It is obvious that if « is an infinite cardinal and Y a topological space
with w(Y) > a, which is a continuous image of the product of a family (X),c; of
compact topological spaces with the properties of Corollary 1.8, then [, (a)
embeds universally in C(Y).

(iii) Corollary 1.8 extends a result of Argyros and Negrepontis [2] and
also contains the result of Hagler [6] for dyadic spaces.

Since k(X) < r(X)*, Corollary 1.6 gives easily the following
1.10. COROLLARY. Let a be an uncountable cardinal, (X,);c; be a family of
topological spaces and

X =[] X..
iel

We suppose that X has precaliber a and p® < o for every B < o. We also
suppose that

a > sup{dim C*([] X)): Fe2,(I)}.
ieF
If dim C*(X) > a, then l,(x) embeds universally in C*(X).
Finally, from Theorem 1.3 we obtain easily the following corollary, which
is contained in [7].

1.11. COROLLARY. Let o be a regular “cardinal with a > 0™, and (X )i,
a family of topological spaces with a > k(X), where

X =[IX.

el
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We suppose that 1, (x) embeds universally into C*([] X,) for every F € 2 () such
ieF
that

dim C*([] X,) = a.
ieF

Then 1,(x) embeds universally into C*(X) if dim C*(X) = a.

Proof. Let Z be a subspace of C*(X) with dimZ = a. If, for every
Je2 (),

z g (1x),
ieJ
then the result follows from Theorem 1.3. We suppose that there is Je 2, (I)
with
Zs cH([1x)
ieJ
If0 < 9 < 1,thereis { f;: & <a} = Z with ||f,| =1and || f,—f,| > 3 for every
¢ <n <a. For every £ < a there are J, = J, with |J,| < k(X), and f, depending
only on J,. Since « is a regular cardinal, « > k(X) and |J| < a, we see that there
exist 4 < a, with |4| = «, and L c J such that J, = L for every (e A. Let Y be
the closed subspace generated by {f;: {€A}. Since
YSs CH[]X),

ieL

by Lemma 1.5, Y embeds isometrically in ( ) @Y,),, where Y, is the
AeP (L)
closed image of Y in C*(]] X,) through the canonical projection of
ieA

(T ®cx[Ix)).

AeP (L) ieA

onto c*([1x).

ied
If dimY, <a for every A€Z,(L), then
a = dim Y < sup{(dim Y)'!': 4e# (L)} < a.

So there is a A€Z (L) such that dim Y, = « and, consequently, [, (x) embeds
isomorphically in Y,, hence in Y, since cf(x) > w (see [8]). Thus I, (x) embeds
isomorphically in Z. '

Acknowledgment. We want to thank Professor S. Argyros for his sugges-
tions that helped the final form of the paper.
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