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0. Introduction. A tournament T = (T'; <) consists of a non-empty
set T and a binary relation << on T such that

(1) < i8 reflexive;

(2) < is antisymmetric;

(3) for any =, yeT, either x <y or y <.

In graph theory [3], a tournament is defined as a non-trivial com-
plete asymmetric digraph (¢ <y is denoted by x -y and read = beats
y or y loses to x). In other words, (1) is not assumed and |T|> 1. By
postulating (1) we just add a loop at each vertex of the digraph, which
does not alter essentially the relational system and enables us to consider I
as a trellis, that is, a pseudo-ordered set any two elements of which have
an Lu.b. (v) and a g.L.b. (A) [6]. Consequently, a tournament is a trellis

in which any two elpments are comparable.
We have

TKY ST =AY <Y =2xVY,

so that % = (T; v, A) is a universal algebra of type <2,2) in which
any subset is a subalgebra. In what follows we shall always write I instead
of I

The notion of convexity is defined in a tournament in the same
fashion as in a partially ordered set. Convex subsets are investigated in
Section 1. Among them the so-called ideals and filters are of special
interest. Roughly speaking, they behave like prime ideals and prime
filters in lattices. The existence of principal ideals and filters and the
transitivity of the relation < are shown to be closely linked.

The study of convex subsets is primarily motivated by the following
fact: any congruence-class of a tournament is a convex subset and con-
versely. Hence the dependence of the congruence lattice on the convex
subset lattice is total. Congruences constitute the object of Section 2.
Subdirectly irreducible tournaments as well as tournaments in which
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congruences are pairwise permutable are characterized and methods of
construction are provided.

In the final section special attention is paid to transitive tournaments.
Let us only mention the following two properties: a tournament T (|7'| # 3)
is transitive if and only if it enjoys the congruence extension proper-
ty; the transitivity of a finite non-simple tournament is equivalent to
the fact that its congruence lattice is Boolean.

The set-theoretical difference of A and B is denoted by 4 — B and
we write a < b when a < b and a # b.

We are indebted to the referee for valuable corrections.

1. Convex subsets. A subset S of T is a convex subset of the tourna-
ment T if a,be S and a < ¢ < b imply ce 8. Equivalently, 8 is conver

if, for all a,be 8 and all ceT — 8, the inequality a < ¢ implies b < ¢. Of
course, T, @ and all singletons are convex. In accordance with [1], & convex
subset 8 will be called non-trivial if S # T and |S| > 1. We denote the
set of all convex subsets of I and the set of all non-trivial convex subsets
of T by ¢(I) and €*(I), respectively.

The following proposition is quite elementary but useful in the
sequel:

THEOREM 1.1. For any A, Be ¢(I), we have

(1) AnBe¥¢(X);

(2) of ANB # @, then AUBe ¥(3);

(3) if ANB # @ and A, B are incomparable (in symbols, A|B), then
A—Be¥4(T), B—Ac¥(T) and (A—B)U(B—A)¢€(T).

Proof. The first two statements are obvious. Let us now assume
ANB # O and A|B. Let us pick a,bin A—B, ¢in B— A and d in ANB.
If d < a, then ¢ < a (B eonvex), ¢ < b (A convex) and d < b (B convex),
which shows that A —Be % (T). We also have ¢ < d (A convex). Since
d < a, we may claim that (4 —B)U(B—A4)¢ % ().

COROLLARY 1.1. ¥(Z), ordered by inclusion, is a complete atomisiic
lattice. If @ +# X e €(X), then

[X) ={Y: Ye?¥(Z), Y 2 X}

i8 infinitely distributive. Bvery 4-element sublattice {A, B, AvB, AAB # 0}
i8 contained in a T-element sublattice including O.

Proof. T and O are the bounds of ¢ () and every element distinct
from @ is the supremum of the atoms, i.e. the singletons, which it contains.
In [X), when X # 0, A and v coincide with N and U, respectively.
Hence

A A (‘\‘/IB,-) = ‘\!/I(A A By)
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and dually. Finally, if A||B and AAB # O, the 7 elements, i.e. 4, B,
AAB(=ANnB),Av B(= AUB), A—B, B— A and @, form a sublattice,
gince the proof of Theorem 1.1 (3) shows that every convex subset which
contains A — B and B— A must contain AUB.

When dealing with three convex subsets of T, combinatorial problems
arise. As a sample we furnish the following statement:

THEOREM 1.2. Let A, B and C be three convexr subsets of I such
that A|B, (ANB)—C #@, A|C, (ANC)—B %@ and BNC #@. Then
BnC < A < BUC.

Proof. Let xe (ANB)—C, ze (ANC)—B and ye BNC. Without loss
of generality we may suppose x < y. Taking successively in account the
convexity of C, Band A, we obtain z < 2,y < zand ye A, whence BNC < A.

Since A|B and ANB # @, we have A — B convex; similarly, 4 —C
is convex. If (A —B)n (4 —C) # 9, then

(A—B)u(4—0) = AnC(BNC)

is convex. Since x and 2 both belong to (A —B)u(4A—C) and z < y < 2,
we have ye (4 — B)uU (A —C), a contradiction owing to ye BNC. In con-
clusion,

\

(A—B)n(A—-C) =AnC(BU0) =@ and A < BUC,

which completes the proof.

When there is a binary partition {4, B} of T such that, for every
aeA and every be B, we have a < b, the tournament ¥ is said to be reducible
(otherwise it is 4rreducible). In accordance with [6], we call A an ideal
of T and B a filter (or dual ideal) of I. Let us formulate this notion clearly.

An ideal I of a tournament T is a non-empty subset of T such that,
for every ie I, z < ¢ implies ze I (or, equivalently, ¢¢ I and y¢ I imply
1 < 9y). An ideal I of ¥ can also be defined as a non-empty subset of T
which contains e¢vbd if and only if it contains a and b.

The ideals and filters of a tournament play a role analogous to those
of prime ideals and prime filters in lattices. Firstly, the complement of
an ideal is a filter. Secondly, if two convex subsets form a partition of T,
one is an ideal and the other a filter.

THEOREM 1.3. The proper ideals and filters of T form two disjoint
maximal chains of €(I).

Proof. Clearly, ideals and filters are convex subsets. Moreover,
a convex subset C which contains an ideal I is an ideal. In fact,if I «c C = T
and C is not an ideal, there are xeT —C and ye¢ C —1I such that z < y.
But then, for any z¢ I, 2 < r < y and, owing to the convexity of C, we
have ze C, a contradiction. Finally, two ideals I and J are always com-
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parable, since ae I —J and be J — I would imply a < b and b < a, whence
a =b.

COROLLARY 1.2. If A i3 an ideal of X, then [A) is a chain of €(T).

We leave as an exercise for the reader the following proposition:

THEOREM 1.4. Let A be an ideal of T, Be ¢(T) and A|B. Then

(1) A— B is also an tdeal;

(2) B—A is a filter if and only if AvB =T.

An ideal I is principal if it is generated by a single element a, that
is, if it contains an element a such that z < a for any x¢ I. Such an ideal
will be denoted by (a]. Hence, when I = (a], we have z < a if and only
if e I and (a] = {x: 2eT, z < a}. A direct consequence of this definition
is the following: if I = (a], then I — {a} is an ideal or @, [a) is a principal
filter F' and F — {a} is a filter or G.

In trellis theory, the following terminology is used:

An element a is right transitive if

(1) (a<z<y) = (a<y);
left transitive if

(2) (r<y<a)=>(r<a);
middle transitive if

(3) (r<a<y) = (z<Y);

transitive if it satisfies (1), (2) and (3).

It is easy to see that in a tournament conditions (1), (2) and (3) are
equivalent and, consequently, any of them can help to define the transiti-
vity of the element a. It is also immediate that an element a of a tourna-
ment is transitive if and only if no triple including a is cyeclie.

An element a is distributive if, for any triple including a, each of
the operations v and A is distributive with respect to the other. Finally,
an element a is associative if any triple (z, y, 2) including & is both v -asso-
ciative and A -associative, that is

(xvy)vz =2xv(yvz) and (TAY)AZ =TA(YAR).

The equivalence of these notions in a tournament is established in
the following statement:

THEOREM 1.5. For an element a of a tournament I, the following con-
ditions are equivalent:

(1) a generates a principal ideal I;

(1) a generates a principal filter F;

(2) a is transitive;

(3) a is distributive;

(4) a s associative.
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Proof. Clearly, (1) and (1’) are equivalent. (1) implies (2) since,
if I = (a], @ cannot belong to a cyclic triple. An easy computation shows
that (2) implies (3), while Theorem 15 of [5] proves that (3) implies (4).
Finally, if a does not generate a principal ideal, A = {z: z < a} is not
an ideal and there exist ze¢A and y¢A such that r<a <y and y < z.
Hence

¥y =(rva)vy #zxzv(avy) =

and a is not associative, which completes the proof.
An endomorphism ¢ of T is a mapping of T into T satisfying

TSY > 29SS Yg
or, equivalently,

(vy)p =zpvyp and (TAY)p = TpAYp.

We shall denote by &(T), &¢(T) and (I) the semigroup of endo-
morphisms, the semigroup of ependomorphisms and the group of auto-
morphisms of I, respectively.

THEOREM 1.6. Let gpe &(T) and let S < T.

(1) If 8 is convex in T, then Sp~' (the complete inverse image of S)
18 convex in I.

(2) If 8 is an ideal of T, then Sp~' is either empty or an ideal of I.

Proof. (1) If Sp~! is not convex, there are in T three distinect ele-
ments a, b, ¢ such that ap¢ S, bpe 8, cpe 8 and b < a < ¢. Since pe &(T),
we have bp < ap < cp, contradicting the convexity of S.

(2) If Sp~!is neither an empty set nor an ideal of I, there exist a ¢ S(p_i
and b¢ Sp~! such that b < a. Hence bp < ap with bp¢ S and ape 8, a contra-
diction.

If the endomorphism ¢ is onto, Theorem 1.6 can be completed as
follows: .

THEOREM 1.7. Let pe 6o(T) and let 8 < T.

(1) If 8 is convex in I, then Sp is conver in I.

(2) If 8 is an ideal of I, then S is an ideal of ¥.

(3) If, moreover, ¢ is injective (whence an automorphism), then Sp = §
for any finite 4deal S of I.

Proof. (1) Let us suppose Sp is not convex whereas § is. There are
&, b, ¢ in T such that be Sp; ce Sp, a¢ Sp and b < a < ¢. Since ¢ is onto,
one can find z, y, 2 satisfying ¢ 8, ye 8, ze § and y < 2 < 2, contradicting
the convexity of 8.

(2) is obvious. .

(3) Since S¢ is a finite ideal and |S¢| = |S], Theorem 1.3 enables
us to conclude that S¢ = 8.

3 — Colloquium Mathematicum XXXITII.2



194 J. C. VARLET

2. Congruences. A congruence 6 of T = (T; v, A) is an equivalence
relation such that if (z, y)e &, then

(xAz,yn2)e®@ and (xve,yvz)e® for any zeT.

When the only congruences of T are the equality  and the all con-
gruence ¢, X is simple. It is well known that there is a simple tournament
of any cardinality but 4. The congruence lattice () of T is distributive
([6], Theorem 46).

We first enumerate without a proof a few elementary properties of
congruences in a tournament.

Every congruence-class of T is convex; conversely, every conver subset C
is class of at least one congruence, denoted by ©,, which is the least con-
gruence collapsing the elements of C: (x, y)e ©y if and only if e C and
yeC, or x = y. If the family of non-trivial classes of a congruence O is
{01 (that is, C;e €*(I) for any ie I), then

6O = V6.
iel

Hence, if a congruence is Vv -irreducible, then it has the form O, for
some Ce €(I).

All congruences of I are nuclear, that is, kernel congruences. If
the @-classes are C; (ie I), choose in every C; an arbitrary element ¢;
and define the endomorphism ¢ as follows: xp = ¢; if and only if (z, ¢;) e O;
then kerg = 6.

For a tournament I, the following conditions are equivalent:

(1) T is simple;

(2) €°(X) is emply;

(3) the only endomorphisms of I are injective endomorphisms and
constant maps,

(4) T 18 a regular algebra (i.e., if two congruences have a class in common,
they are equal).

In [2] subdirectly irreducible tournaments are investigated but
not characterized. Before filling the gap, we notice that we do not consider
a one-element algebra as a subdirectly irreducible algebra.

THEOREM 2.1. A tournament I is subdirectly irreducible if and only if
K = N {C;: C;c €*(I)} has at least two elements.

Proof. Sufficiency. Since |K|>2, we have 6 > @ for every
O # w, and T is subdirectly irreducible.

Necessity. In case €*() is empty, K = T with |T|> 1. Other-
wise, if |K| = 0 or 1, then

4/\1{00’: Cie¥*(T)} = o

and ¥ is subdirectly reducible.
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THEOREM 2.2. If ¥ is a subdirectly irreducible tournament for which K
i8 finite, then Og is fully characteristic. If, furthermore, T is finite, then O
18 fully imvariant.

Proof. Let us notice that the property is trivial if T is simple. In
consequence, let K be a proper subset of T. First we have to show that,
for any &e #(I), (8, b)e O implies (a&, b&)e O or, equivalently, a, be K
implies a&, bée¢ K or af = bf. Since ¢ is an automorphism, K¢ = K.
In fact, by Theorem 1.7, K¢ is a non-trivial convex subset, whence K¢ = K
and, since |[K&| = |K| and K is finite, K¢ = K.

Let us now consider T finite and ¢e &(X). If ¢ is injective, pe A (I)
and, by virtue of the first part, K¢ = K. If ¢ is not injective, there exist
@, y in T such that ¢ # y and p = yg, whence (z, y)e @, # w and O < 6,.
Then (a, b) e O implies (a, b)e O, i.e. ap = by.

Let us now focus our attention on tournaments in which congruences
are pairwise permutable. Such tournaments can be characterized as
follows:

THEOREM 2.3. Congruences of X are pairwise permutable if and only
if any two convex subsets of T are either disjoint or comparable.

Proof. Sufficiency. We have to show that, for any @, ® ¥ (I),
(a4, )e ® and (b, c)e @ imply (a,d)e D and (d,c)e ® for some deT. Let
us denote [a]®@ and [¢]® by C, and C,, respectively. Since C, and C,
both contain b, we have either C, < C, or (C, = C,. It suffices to take
d = ¢ in the first case and d = a in the second.

Necessity. Let us suppose that there exist C,, 0, in ¥(I) such
that C;NC, # O and yet C, and C, are incomparable. Then it is easy to
see that Oy and Op, are not permutable by considering the elements
@, b, ¢ chosen as follows: ae C,—C,, be C;NC,; and ce C,—C,.

Remark. Other formulations of the condition in Theorem 2.3 are
the following: AAB # O (A, Be ¥(I)) implies AAB = A or AAB = B;
all elements of ¥(T)— B are A-irreducible.

COROLLARY 2.1. Congruences of a subdirectly irreducible tournament I
are pairwise permutable if and only if €*(X) is a chain, possibly empiy.

THEOREM 2.4. If congruences of I are pairwise permutable, then X (X))
18 tsomorphic to a direct product of chains with an additional greatest element ¢.

Proof. Elements of €*(¥) can be partitioned into chains y; and
every congruence has at most one element of each y; as a class. The trivial
congruences o and ¢ are obtained by refusing any element of €*(T) as
a class. Let us notice that

(@) =[] (i +1)+1.

i
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COROLLARY 2.2. If the non-trivial convex subsets of I are mutually dis-
joint, then A" (T) 18 isomorphic to a Boolean lattice with an additional greatest
element .

Theorem 2.3 shows that tournaments in which non-trivial convex
subsets are mutually disjoint, as well as tournaments in which non-
-trivial convex subsets form a chain, are worth mentioning. The existence
of the first is. proved by the following proposition (in fact, they abound):

THEOREM 2.5. Let # = {8;};.; be a partition of a set E. There exists
an irreducible tournament T whose vertex sét is E and whose convex subsets
are exactly E, O, all S; and the singletons of E if and only if |2?|¢ {2, 4} and
|S;] % 4 for every i.

Proof. Sufficiency. Since |8, # 4, each block S; can be made
into a simple tournament S; = {(§;; <g). As |#| # 4, we can construct
a simple tournament # = (#; <z). Combining these two constructions,
we obtain a tournament on F, which we denote by ¥ = (¥; <), where
< has the following meaning: # < y in ¥ if either « and y lie in the same
block 8; and z <g, ¥, or # and y lie in §; and §; (¢ # j), respectively,
with 8; < §;.

We want to show that T has the required properties. Of course,
every S; is a convex subset of T; moreover, no other proper subset of T,
not a singleton, is convex.

First, if A convex in T meets some §,, then [ANS;| =1or A =2 8§;,
since S; is simple (ANS; convex in T implies 4ANS; convex in §;).

Second, if A convex in ¥ meets two distinct blocks §; and §;, then 4
meets all blocks. Indeed, let

P = U{Si: S‘nA Sé@}.

Clearly, P is convex in I, whence P = T as {§;} forms a simple tour-

nament.
Finally, let z¢A4 and denote by 8, the block of z. Since 4 is convex,

for all y¢ 8, either # <y or y <z, that is §,<,8, or §,<58,. In
other terms, | J{8;: §; # 8.} is convex, which is impossible since || # 2.
Necessity. The necessity of the condition |2| 7 2 follows from
the irreducibility of I. Since there is no simple tournament of cardinality 4,
the other two conditions are also necessary.
Now we turn our attention to the tournaments in which the non-

-trivial convex subsets form a chain.
THEOREM 2.6. If €*(T), ordered by inclusion, is a chain, then T is
always subdirectly irreducible; it is irreducible if and only if
|T —U{Ci: Cie 6" (T)}| 1.

Moreover, €* () is totally ordered if and only if o (X) is totally ordered.
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Proof. The first part is a direct consequence of Theorem 2.1. Then
let us observe that if €* () is @ chain, A = (J{C;: C;c €*(T)} is a convex
subset. If A = T, then T is, clearly, irreducible. If |T— A| =1, then
T — A is convex and I is reducible. If |T'— A} > 2, then ¥ is irreducible,
since, denoting by B one of the two complementary convex subsets of T,
one can easily verify that BNnA = @ and BNA +# @ are equally impossible.

If ¢*(X) = {C,} is totally ordered, the only non-trivial congruences of
T are O, and A (T) is a chain. Conversely, if in €*(T) there exist €, and C,
which are not comparable, then @, ||0¢,, and 2" (T) is not totally ordered.

3. Transitive tourmaments. A tournament T = (T; <) is transitive
if the binary relation < is transitive. By virtue of Theorem 1.5, a tour-
nament is transitive if and only if every of its elements generates a principal
ideal. Many characterizations of the transitivity of a tournament are
known, at least in the finite case ([4], p. 15). Other characterizations in
terms of convex subsets or congruences will be provided. The first one
is, in fact, an application of a more general property of trellises ([5],
Theorem 40). Its direct proof is very easy and omitted.

THEOREM 3.1. A tournament I is transitive if and only if any two
elements of T can be separated by an ideal.

Since the word ‘“‘ideal” can be replaced by ‘filter”, the following
statement is rather natural:

THEOREM 3.2. A tournament X 18 tramsitive if and only if every convex
subset of X is the intersection of an ideal and a filter.

Proof. In a transitive tournament, every convex subset is, clearly,
the intersection of the ideal and the filter it generates. If a tournamrent
is not transitive, it contains a cyclic triple, say a < b < ¢ < a. Any ideal
(respectively, any filter) which contains ¢ must also contain b and ¢, and
hence the convex set {a} cannot be the intersection of an ideal and a filter.

We cannot substitute the words ‘“non-trivial convex subset” for
‘“ideal” in Theorem 1, as shown by the tournament whose elements
are a; (1 =1, 2, 3), b; (j =1, 2, 3) and ¢, and where the a; form a tran-
sitive subtournament, the b; form a transitive subtournament and
a; < b; < ¢ < a; for every ¢ and j. Nevertheless, we have the following result:

THEOREM 3.3. A tournament I of cardinality at least 3 is tranmsitive
if and only if, for any three distinct elements, there exists & convex subset
containing two of them but mot the third.

Proof. Sufficiency. Let us suppose I is not transitive. There
exists a cyclic triple, and any convex subset containing two of its elements
must contain the third, which contradicts the hypothesis.

Necessity. Let a <b < ¢ in the transitive tournament I. The
ideal generated by b contains a and b, but not e.
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We remind the reader that a class of algebras is said to have the
congruence extension property if, for any algebra U of this class and any
subalgebra S of A, whenever @ is a congruence on S, there exists a con-
gruence @ on A such that P|S = 6.

THEOREM 3.4. A tournament T (|T| # 3) is transitive if and only if it
enjoys the congruence extemsion property.

Proof. Sufficiency. Since tournaments with one or two elements
are transitive, we may restrict ourselves to a tournament I such that
|T| > 3. If I is not transitive, it has at least one eyclic triple. Since there
are three non-isomorphic tournaments of cardinality 4 with at least one
cyclic triple ([4], p. 91), T has a subset isomorphic to one of the following
tournaments:

a b a b a b

d c d c d c

It is easy to verify that, in every case, ® = {{a, d}, {c}} is a con-
gruence on the subalgebra {a, ¢, d}. This congruence cannot be extended
to the whole tournament I, since the class containing a¢ and d must then
contain b and also ¢, due to the fact that {a, b, ¢} is @ cyclic triple.

Necessity. Let ® be a congruence on the subset S of the transitive
tournament I. Define the relation @ as follows:

for any x, yeT, (z, y)e @ if there are u, ve S such that u <z <y < v
and (u,v)e 6, or if x = y.
Clearly, @ is a congruence on T extending 6.

Let us introduce the last definition: an element) of a tournament I
will be said zsolated if no non-trivial convex subset of ¥ contains a.

THEOREM 3.5. Let T be a finite, non-simple tournament. Then I 1is
transitive if and only if X (X) is a Boolean lattice.

Proof. Sufficiency. Let us begin with a few elementary remarks.

First, | (T)| > 2, since T is not simple.

Second, ¥ has no isolated element, since otherwise J¢ (T)— {¢} would
have a greatest element and 2 (¥) would cease to be complemented.

Third, for any Ce €*(Z) and any z¢ O, there exists ¢’ €*(T) such
that ¢’ >z and |CNC’'| = 1. Indeed, if @ denotes the complement of 6,
in o (X), Oov®P = requires the existence of ('¢¥* () with ¢ >z,
C'NC # B, whereas OoADP = o yields |[CNC’| = 1.

Now, let us consider an arbitrary triple {z,y,2} of T and denote
by C a non-trivial convex subset of T containing .
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If C contains one of the elements y, 2 but not the other, the conclusion
follows from Theorem 3.3. ’

If y¢ C and z¢ C, there is C'e €*(I) with ¢’ >y and [C'NC| = 1. If
C' $z, then CUC’ is the desired convex subset. If C' 52 and ¢’ $z, then ('
separates {z, v, 2} adequately. If C’' >z and (' >z, then C'—C behaves
as required by Theorem 3.3.

The case where ye ¢ and ze ¢ is somewhat harder. Since Ce €*(Z),
there is C,e €*(T) such that |0,NC| = 1. If O, contains one of the ele-
ments z, y, 2z, then C —C, has the required separation property. Other-
wise, since C —C, is convex, there is C, such that |(C—C,)nC, = 1.
Eventually, after finitely many steps, one can find C, containing one
of the elements z,y, 2, and the convex subset C—(C,UC,V...UC;) is
adequate. One may conclude that T is transitive.

Necessity. When T is a finite transitive tournament, any con-
gruence has in ¢ (I) a complement whose description is analogous to
those of a finite chain considered as a lattice.
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