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Let A be a Boolean algebra. A measure on A is a map m from A
into the closed interval [0, 1] such that m(\/ ) = 1 and m(aUdb) = m(a)+
+m(b)forand = A 4 (A4 and \ 4 denote the zero and the unit elements
-of A, respectively). A set X of measures on A is said to be full if m(a)
< m(b) for all meX implies a < b. We then have a = b if and only if
there is meX such that m(a) # m(b). Every Boolean algebra admits
a full set of measures. Namely, if A is a Boolean algebra and M the set
of all maximal filters in A, then, for each I eM, the characteristic function
my of I is a measure on A, and the set {m;: I <M} is full (see [3]). These
measures are two-valued, but clearly there are full sets of measures which
are not two-valued. For example, if A = { A, a, a’, \/} is a four-element
Boolean algebra, then the measures m, and m, defined by m,(a) = a
and my(a) = B, respectively, for any 0 < a < 1/2 and 1/2 < < 1, form
a full set of measures -on A.

If X is a non-empty set, [0, 1] denotes the set of all functions
from X into [0, 1]. For any a, be[0,11%, a+b and a—b denote the sum
and the difference of the functions a and b, respectively. For simplicity,
0 will denote the zero function and 1 the function equal to 1 for all x ¢ X.
For a, be[0,11%, a < b means that a(x) < b(z) for all zeX.

We now adopt the following definition:

Definition. Let 4 = [0,1]1* be a set of functions from X # @
into [0, 1]. We say that A is a numerical Boolean algebra if A is a Boolean
algebra with respect to the natural ordering ¢ = b<-a < b in A with the
complementation ¢’ =1—a, and aub = a+b for anb = A .

If A is a numerical Boolean algebra, then we have ¢’ = 1—a and
ana’ = N\, for aeA; hence \/ , = ava’ =a+a’ =a+(1—a) =1, and
Aa =V .4 =1 =1-1 = 0. Thus the zero and the unit functions belong
to A and are the zero and the unit elements of A, respectively. Since in
a Boolean algebra anb = A is equivalent to @ < b’, in a numerical Boolean
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algebra anb = A is equivalent to a <1—1b, i.e. to a+b < 1. Hence, in
a numerical Boolean algebra a+b <1 implies aUb = a+b.

Every Boolean algebra can be isomorphically represented as a numer-
ical Boolean algebra and each full set of measures on a Boolean algebra
induces such a representation. Namely, let A be a Boolean algebra with
a full set X of measures. For each a4, let @ denote the function from X
into [0, 1] defined by @(x) = z(a) for all < X. We have Ax = {G: aecA}
< [0, 1]%, and it is easy to see that Ay is a numerical Boolean algebra
isomorphic to 4 under the correspondence a < @. If we take X to be the
set of all two-valued measures induced by maximal filters in 4, then X
can be interpreted as the Stone space of A, and Ax is the set of charac-
teristic functions of open-closed subsets of X. Thus we see that the Stone
representation is a special case of numerical representation, namely such
that all functions in this representation are two-valued.

If A < [0,1]% is a numerical Boolean algebra, we can easily obtain
a full set of measures on A by setting, for each zeX, m,(a) = a(x) for
all aeA. Then m, is-a measure on A and the set X = {m,: <X} is full.
Hence, every numerical Boolean algebra arises essentially from a full
set of measures on a Boolean algebra in the manner described above.

The following theorem provides a full characterization of numerical
Boolean algebras in the family of all partially ordered subsets of [0, 1]1%.

THEOREM. Let X be a mon-empty set and let A = [0,11% be a set of
functions from X into [0, 1]. Let us say that a sequence (a,, a,, a) of members
of A is a triangle if a;+a; <1 for ¢ # j. Then A is a numerical Boolean
algebra if and only if the following conditions are satisfied:

1° The zero function a = 0 belongs to A.

2° For every aeA, 1—acA.

3° For every triangle (a,, as, as), a;ed, 1 =1, 2,3, we have a,+ a,+
+azed.

4° For every pair a, b e A there is a triangle (c,, ¢;, C3), ;e A, 1 =1, 2, 3,
such that & = ¢, +c¢;, and b = c3+¢5.

Proof. Let A be a numerical Boolean algebra. It follows from the
definition that A satisfies conditions 1° and 2°. Let (a,, a,, a;) be a triangle.
We have, in 4, anb = A 4 equivalent to a4+-b< 1, s0 a;na; = A\, for
4 # j. From the definition of a numerical Boolean algebra it then follows
that a,va, = a,+ a,. Since

(@ V) Nag = (a;Naz)U(asNag) = A4,
we obtain
(a,Vaz)Va = (a,Vay)+a; =a,+a,+a;eA.

Thus condition 3° holds. For a,bed, let ¢, = anb, ¢, = anc, and
¢s = bne,. It follows from the distributive laws that ¢;ne; = Ay, i.e.
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¢;+¢; <1 for ¢ 5 j; then (¢4, ¢y, ¢3) is a triangle, and @& = ¢, +¢, and
b = ¢,+¢;. Hence condition 4° also holds.

Assume now that 4 < [0, 11X satisfies conditions 1°-4°. We consider
in A the natural partial order a < b<a(z)<b(x)forzeX.Let a' =1—a
for aeA. We have to show that A is a Boolean algebra with respect to
this order with the complementation a’. First, we show that (4, <) is
a lattice. Let us say that a, beA are orthogonal, a | b, if a+b < 1. We
shall show that aub = a+b for a | b. Observe first that since (a, b, 0)
is a triangle, a+bed and a<a-+b, b<<a-+b. Let a<c and b < ¢ for
ceA. This implies (1—¢)4+a <1 and (1—¢)+b < 1. Hence (a,b,1—c)
is a triangle and, by 3% a+b+(1—¢)ed, i.e. a+b+(1—c) < 1. Conse-
quently, a+ b < ¢ which shows that aub = a+b for a | b. If (¢, ¢;, C5)
is a triangle, ¢;+¢,+¢; <1 by 3% and (c,Ve,) | ¢;. Hence c¢,UcyUcsy
exists. Now, for arbitrary a, b e A, there is a triangle (c,, ¢;, ¢;) such that
a =¢+¢;, =¢,Ve; and b = ¢;+¢; = ¢,Ue;. Consequently, ¢,Uc,Ue; =
(¢1Ve5) V(e Ues) = aUb, 1.e. aUb exists. Since, in A4, a < b is equivalent
to b’ < a', and (a’)’ = a, it is evident that, for any a, beA, (a’' Ub’)’ exists
and equals anb. Hence (4, <,’) is an orthocomplemented lattice. For
a<ba,bed, we have (1—b) | a,80 (1—b)+aed,andc =b—a =1—
—[(1—0bd)+a)leA. Thus, for a < b, there is ¢ed, ¢ | a, such that auc
= b, i.e. A is orthomodular (see [2], theorem 29.13). According to defi-
nition 36.2 in [2], two elements a and b in an orthomodular lattice are
said to commute, aCb, if a = (anb)U(and’). It follows from 4° that in A
any two elements commute. In fact, let a, b e A. Let (c,, ¢,, ¢;) be a triangle
such that ¢ =¢;+¢3y b =c,+¢5, and let d = (¢, +¢,+¢) =1— (¢, +
=+ ¢34 ¢3). In the set {¢y, ¢;, ¢35, d} any two elements are orthogonal. Conse-
quently, we have

a, == (clucz)’ - 1—01—02 - d+03
and
b’ = (02U03)’ = d+01.

Thus a’Ub’ = ¢;+d+¢5y and anb = (a6’ V') =1— (¢, +d+¢) = c,.
Similarly, we have anbd’ = ¢,. Hence (anb)u(and’) = ¢,+¢, = a, i.e.
aCh. It was shown by Foulis [1] (see [2], theorem 36.7) that if a, b
and c¢ are elements of an orthomodular lattice such that one of
them commutes with the other two, then each of the distributive laws
involving these three elements is satisfied. Since, in A4, aCb for all a, be A,
we infer that A is a complemented distributive lattice, i.e. 4 is a Boolean
algebra with respect to the order < and complementation ’. In a Boolean
algebra, a | b is equivalent to anb = A. We have shown that auUb
= a+bfor a | b, hence A is a numerical Boolean algebra. This completes
the proof of the theorem.
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