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1. Introduction. In this paper we throughout assume that (y, %)
is a Hausdorff locally convex topological vector space (l.c. TVS) equipped
with the topology #. Let x* be the topological dual of (y, #) and y**
be the topological dual of (x*, B(x*, x)), where B(x*, ) is the strong topo-
logy on x* generated by the polars

A = {f: fex* |f(x)] <1} for all wed,

where A is a o(y, x*)-bounded subset of y. Our aim is to interrelate Schauder
decompositions in y, y* and x** equipped with various locally convex
topologies. Motivations for investigating these results are spelled out
in Sections 3 and 4 of this paper.

Let {M;} be a sequence of non-trivial subspaces of y. We say that
{M;} is an F-basis of subspaces (that is, #-bos) or an F-decomposition
if to each xe y there corresponds a unique sequence {z;}, #;¢ M;, such that

n
1.1 z =1m )
(1.1) lim ;’ o
the convergence of the infinite series being with respect to the topology #
on y. Corresponding to a given #-bos {M,} in (y, F), there exists a sequence
{P;} of orthogonal projections on y defined by P;(x) = x;, where x is
given by (1.1). Moreover, P;(y) = M, = R(P;), the range of P;, ¢ > 1.
In case each P; is &-continuous, the #-decomposition {M,} or, more
explicitly, {R(P;), P;} is usually referred to as an #-Schauder decompo-
sition or merely an #-Sbos.

2. Adjoints on y*. In the sequel we will need various results con-
cerning properties of adjoint operators on y*. To begin with let us recall
the canonical embedding J: (x, #) — (x**, B(x**, x*)) defined by J (z)(f)
= f(x) for xe y and fe y*. If (x, #) is infrabarrelled ([2], p. 217), it
is known ([2], p. 229) that J is a topological isomorphism from (y, &)
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onto (J (), ﬂ(J (%), x*)). The proof of the following simple proposition
is omitted:

PROPOSITION 2.1. The map J: (y, o(x, 1*)— (J(x),a(J(x), Z*)) is @
topological isomorphism.

For an l.c. TVS (x, %) we now recall the following ([3], Proposi-
tions 2.3 and 2.6):

PROPOSITION 2.2. The adjoint map T* of a B(x*, x)-B(x*, x) continuous
linear operator T on x* into itself takes x** into x** and is B(x**, z*)-
=B (x**, x*) continuous.

PROPOSITION 2.3. Let T be a o(x*, x)-continuous linear operator on yx*
and let T* be the adjoint of T .defined on the algebraic dual of y*. Then
T*(J(0) = I (x)

PROPOSITION 2.4. Let (x, #) be as before. Suppose T': y*—x* i8 a linear
operator such that T i3 o(x*, x)-o(x* x) continuous. Then T is B(x*, x)-
-B(x*, x) continuous. ,

PROPOSITION 2.5. Let (x, F) be an infrabarrelled space and T be a linear
operator on y* such that T is o(x*, x)-o(x*, x) continuous. Then B = J ' T*J
8 an F-F conlinuous linear operator.

Remark. Following Proposition 2.5 one can easily see that if T
is a projection on y*, then E defined as above is also a projection on y.

3. o(x**, x*)-Sbos for y*. In an earlier paper [3], two of us have
proved the following results:

THEOREM 3.1. (i) Let (x, #) be an l.c. TVS. If {M;, E;} i an F-Sbos
for x, then {R(E}), E;} is a o(x*, x)-Sbos for x*.

(i) Let (yx, F) be a complete barrelled space. If {Ni,Pi} 8 a o(x* x)-
-Sbos for x*, the'n {R(E,), E;}, where E, = J'P;J is an F-Sbos for y.

THEOREM 3.2. Let (5, ) be a complete barrelled space such that {N;, P;}
is a o(x*, x)-Sbos for y*. Then {N;, P;} is a B(x* x)-Sbos for [U N},
o im]
the B(x*, x)-closure of the space generated by J N,.

i=1
In view of Theorem 3.1 there arise two natural questions, namely,

if {M,;, E;}is a o(x** x*)-Sbos for x**, then
(i) under what circumstances {M,, E;} is B( ", x*)-Sbos for [U MY,

the f(x**, x*)-closure of the space generated by U M,;, and

t=1

(ii) under what circumstances J (%) [U M)

A partial answer to these problems is contalned in the following
two theorems for which we need a few more definitions.

A space (x, F) is saidto be bornological if every balanced, convex
and bornivorous (i.e., a set which absorbs every #-bounded set) subset
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is #-neighbourhood of 0 in y. A space (y, #) is said to be distinguished
if every o(x**, x*)-bounded subset in y** is contained in &(x**, x*)-closure
of some #-bounded subset of y. An #-Sbos {N,, D;} in (x, F) is called
shrinking if {R(D})} is a B(x* x)-Sbos in y*. We now state and prove
the following result:

THEOREM 3.3. Let (x, #) be a distinguished bornological space and +**
be its bidual. Suppose x** has a o(x**, x*)-Sbos {M;, E;} and let E; be
the restriction of E; to J(x). If {R(E;)} is a Sbos for J(x) with respect to
the topology induced on J (y) by B(x**, x*), then {R(J ' E;J)} is a shrinking
Sbos for x.

Proof. Let J,: yx*—>x*** be the canonical embedding, where jy***
is the dual of y** with respect to #(x**, x*). As x is a distinguished borno-
logical space, (x*, B(x* z)) is barrelled ([2], p. 288) and complete ([2],
p. 223). Now {M,, E,;} is a o(yx**, x*)-Sbos for y**. It follows, therefore,
by Theorem 3.1 (ii) that {R(J,'E;J)} is B(x*, x)-Sbos for yx**. From
the fact that {R(E;)} is Sbos for J (y) with respect to the topology induced
by B(x**, x*), {R(J'E;J)} can easily be shown to form an #-Sbos for y.

Now, in order to complete the proof, we need to show that (J ' E;J)*
= J: E}J.. Since {R(E;)} is a B(x**, x*)-Sbos for J(x), E;J (x) = J (%)
for each 7> 1. Therefore, for each ze y, there exists a y;e y such that
E;J (z) = J (y;). By Proposition 2.3, E;J.(3*) = J«(x*) for each i >1
implies that for fe y* there is g;e x* such that E;J.(f) = J.(g;). Hence,
for ze y,

[T E:) ()] () = fI(T ' Ey) ()]

= f(ys) = J (o) (f) = I« (f) (J (%)) = Iu(f) [Eid (2)]
= Ju(f) [B:d ()] = (B Js) (f) (J (@) = I (g5) (I ()}
= J (@) (9) = g:(2) = [(JE{ ) (/)] (@)

and this implies

(T BT = I Ed.

This completes the proof.

THEOREM 3.4. If (x, &) i8 an finfmbarrelled space having a shrinking
Sbos {N;, D,}, then {R(D;*)} is a a(x**, x*)-Sbos for x**. Moreover, if P;
is the restriction of D;* to J (), then {R(P } is a Sbos for J (y) in the topo-
logy induced by B(x**, x*).

Proof. Since {N,, D;} is a shrinking Sbos for (y, #), it follows that

{R(D})} is a B(x*, x)-Sbos for y*. Hence, by Theorem 3.1 (i), {R(D;*)}
is a o(x** x*)-Sbos for x**.
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Clearly, {R(JD;J ")} is a Sbos for J(x). Thus we need to show that
JD;J™' = P, for each 1> 1. So, let z¢ y and fe y*. Then

(P:d (@) (f) = (DF*J (@) (f) = J (@) (D} (f)) = (D} (f)) (@) = f(D;(x))
= (I (Dy(@)) (f) = [(ID,T™) (I (@)] (£)

implies
Pl' = J.DiJ—l,

thereby completing the proof.

4. u(x*, y)-decompositions in x*. In this section we investigate
Schauder decompositions in y* with respect to the strongest locally convex
topology wu(x*, x) on x* which coincides with o(x* x) on x* on every
equicontinuous subset of y*. For the sake of completeness we include
a short description of the topology u(x*, x) leading to the formation of
its neighbourhood system at the origin in yx*. Let, therefore, A(x*, x)
be the locally convex topology on y* generated by polars of all precompact
subsets of (x, #). It is known ([2], p. 235, Proposition 8) that the topo-
logies induced on an equicontinuous subset of y* by A(x*, x) and o(x*, x)
are equivalent. Further, suppose that »(x*, ) is the strongest topology
on y* which induces on every equicontinuous subset the topology induced
thereon by o(x*, x). The topology need not be a linear topology ([4],
p. 160). We, therefore, introduce the topology u(x*, x) defined as above.
If »(x* x) (Arens [1] writes c¢(x*, x) for x(x* x)) denotes the topology
on xy* generated by the polars of all balanced, convex and %-compact
subsets in (x, &), then it is clear that

(4.1) o(x* x) = =(x* x) < ©(x* 1),

where 7(x*, x) is the Mackey topology on x*.
If (x, #) is metrizable, it follows from Banach-Dieudonné Theorem
([2], p- 245) that

(4.2) (2% x) =v(x%x) = p(x* 1),

and a neighbourhood system at the origin in x* in the topology u(x*, x)

is given by the polars of subsets of y consisting of points of a sequence

converging to zero in (x, #) (see, for instance, [2], p. 247, Exercise 1(b)).
Let us observe that if (y, #) i3 quasi-complete, then

(4.3) Alx* x) = %(x* 1)

Thus, if (x, #) is a quasi-complete metrizable space, it follows
from (4.1) through (4.3) that

4.4) o(x* x) < u(x* x) < =(x* 2)-
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Since u(x*, x) is locally convex, it turns out from Mackey-Arens
Theorem ([2], p. 205; [1], p. 793) that u(x*, x) is compatible ([2], p. 198)
with the duality of y and x*, that is, we have

ProproSITION 4.1. If (x, %) is quasi-complete and metrizable, then
a linear functional ¢ on x* 18 o(x*, x)-continuous if and only if it is u(x*, x)-
-continuous.

We now prove

PROPOSITION 4.2. Let (x, ) be quasi-complete and metrizable and let T
be a linear operator on x*. Then T is o(x*, x)-o(x* x) continuous if and
only if it 18 u(x* x)-u(x* x) continuous.

Proof. Suppose first 7' is o(x*, x)-o(x*, x) continuous. Let U be a
0-neighbourhood in u(x*, x). We may assume that

U ={g: gex* lg(z;)| <1},

where {z;} is a sequence in (x, ) with x; -0 in #. From Proposition 2.3,
T*J(x) < J(x); moreover, (x, F) being metrizable, is infrabarrelled.
Therefore, by Proposition 2.5, J'T*J is an & -# continuous linear
operator from y into y which implies J~!T*J(x;) -0 in (y, #). Hence

V ={f: fex* |[f(I7T"T (@) < 1}

defines a neighbourhood at origin in x* with respect to x(x*, x). The
fact that T*J(x) < J (x) implies that for each x; there is a y;e y with
T*J (x;) = J(y;). Thus feV and

IT(f) (@) = |J (@) (T())| = 1T*I () ()]
= 1J(¥) (f)l = If ()l = | I T* I (w))| < 1,

that is, T'(f)e U and so T is u(x* x)-um(x* x) continuous.
For converse, let T be u(x* x)-u(x* x) continuous and let U be
any o(x*, x)-neighbourhood of 0 in y* For some £ > 0 we may take

U=A{f: If(®)|<e,meyg,1=1,2,...,n}.

For each ¢ > 1 it easily follows that J(x;,)T is a u(x*, x)-continuous
linear functional on y*. Indeed, f,—0 in u(x* x) implies T'(f,)—0 in
u(x* x), whence Tf,(x;) -0 for each z; (+ =1, 2, ..., n) and, consequently,
J (x;) (T'(f,)) >0 for 1 <i<<n. Thus J(x;)T is p(x* x)-continuous. There-
fore, by Proposition 4.1, J(x;)T is a o(x*, x)-continuous linear functional
on x*.

Thus, for ¢ > 0 defining U and for each fixed ¢, 1 < ¢ < n, there is a
a(x*, x)-neighbourhood U; such that fe U; implies '

IT(f) (w;)] = IJ(“’.') (T(f))l <e.

8 — Colloquium Mathematicum XXXVI.1
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Let
n
V=NU,.
i=1
Then feV implies |T(f) (x;)] < efor 1 <i << n,i.e., T(f)e U. Hence T
is o(x* x)-0(x* x) continuous. The proof is completed.
ProOPOSITION 4.3. Let (x, ) be quasi-complete and metrizable. Then,
for a sequence {g,} in x* and a function fe x*, hm 9n = [ in o(x*, x) if and
only if limgy =1 in u(z* )

Proof. Since the topology u(x*, x) is stronger than o(x*, x), it follows
that limg, = f in u(x*, x) implies limg, = f in o(x* %)
n n

To prove the converse, let limg, = f in o(x* x). Hence the set

n

M = {g,, g2y ---3f} 18 0(x*, x)-bounded. As y is quasi-complete, it follows
that M is B(x*, x)-bounded (see [2], p. 210, Theorem 4). Moreover, y is
metrizable and so it is infrabarrelled. Consequently, M is an equicontin-
uous subset of x* (see [2], p. 217, Proposition 6). Let G be any u(x*, x)-
-neighbourhood of 0e y*. Then MN(G+f) is a neighbourhood of f in J.
Hence, by the definition of u(x*, x), there exists a o(x*, y)-neighbourhood V
of 0 in y* such that MN(G+f) = M (V +f). In view of the hypothesis,
there is an integer N = N (V) such that if g,,e f+ 7V for all n > N, then
gnef-+@ for all n > N. Hence hmg,, = fin u(x*, x). This completes the
proof.

Remark. Proposition 4.3 is true also for barrelled spaces.

THEOREM 4.4. If (y, F) t8 a quasi-complete, metrizable l.c. TV S, then
a sequence of non-trivial subspaces {N,} in x* is a o(x*, x)-Sbos for x* if
and only if {N;} is u(x* x)-Sbos for x*.

Proof. Let {N,;} be a a(x*, x)-Sbos for y* and {P,} be the associated
sequence of orthogonal projections. Then each P; is o(yx*, x)-continuous
and each fe y* is uniquely expressed as

— llm ZP in o(x* z).

By Proposition 4.2, each P; is u(x*, x)-continuous. Also, by Proposi-
tion 4.3,

f =lim ZP in p(z* 1),
and the expansion is unique. Therefore, {N,} is u(x*, x)-Sbos for x*. With

the help of Propositions 4.2 and 4.3, the converse can be proved in a
similar fashion.
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Making use of Theorem 3.1, we can derive the following result as

COROLLARY 4.5. If {M;, E,} is an F-8bos for a quasi-complete, metriz-
able l.c. TVS (x, F), then {R(E}), E}} is a u(x*, x)-Sbos for x*.

Remark. Some of the propositions in this note are generalizations
of the results due to Retherford [5].
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