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ON THE COMPOSITE LEHMER NUMBERS
WITH PRIME INDICES, III

BY

J. WOJCIK (WARSZAWA)

Schinzel has deduced from his conjecture H (see [3], p. '95-96) a cer-
tain property of the so-called Lehmer numbers

(a"—=p") (a—B) if » is odd,

Po(e, f) = (a®—p")[(a*—p?) - if n is even,

where a and g are roots of the trinomial 23 —l/fz'+.M y and L, M are rational
integers.
Lehmer numbers can be also defined as follows:

LP”_I '—MPn_z if ” iS Odd’

'Pl =Ps = 1, -P“ = . .
P, ,—MP,, if n is even.

Schinzel’s results are the following:

THEOREM I. If LM # 0, K = L—4M # 0 and none of the numbers
—KL, —3KL, — KM, —3KM is a perfect square or each of the numbers
K, L is a perfect square, then there exists an integer k > 0 such that for each
D # 0 there exists a prime q satisfying q|\P,, (8, D) = 1, where

=3 (7)

KL
and (T) 18 Jacobi’s symbol of quadratic character.

THEOREM II. Under the assumptions of Theorem I, conjecture H implies
the existence of infinitely many primes p such that P,(a, ) <8 composite.

The afore-said conjecture H reads as follows:

H. If f,,...,f; are irreducible polynomials with integral coefficients
and positive leading coefficients such that the product f,() ... fi.(x) has no
constant factor greater than 1, then there ewist infinitely many positive inte-
gers x such that f,(x), ..., f(x) are primes.
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In [3] Schinzel conjectured that Theorems I and II remain valid
under the single condition that a/g is not a root of unity, which is clearly

necessary.
A partial result in this direction has been established in [4]. The
aim of this paper is to prove the conjecture completely. We shall show

THEOREM 1. If a and B are different from zero and a/f is8 not a root of
unity, then there exisits an integer k > 0 such that for every integer D # 0
there exists a prime q satisfying the condition

q—1
QIP(q-l)/m (_k_’ ) =1.

THEOREM 2. If a and f are different from zero and a/f i8 not a root of
unity, then conjecture H implies the existence of imfinitely many primes p
such that P,(a, B) 18 composite.

Remark. Theorem 1 is a little stronger than the theorem conjec-
tured by Schinzel. Indeed, if ¢ is sufficiently large (see the proof of The-
orem 2) and ¢|Pg,_,,(a, B), then (a/f)? =a/f (modg) and ¢ splits in
Q(a/) = Q(VEL). Thus

I =1o

q
Theorem 1 is deduced from the following (see [5], Theorem 1)

5

THEOREM 1’. Let f be an irreducible primitive polynomial with rational
integer coefficients and a positive leading coefficient. Assume that f 18 differ-
ent from x and 18 not a cyclotomic polynomial. Then there exists a positive
integer ko = ko(f) such that for every positive integer k divisible by k, and
Jor all positive integers D and r there exist infinitely many primes q satis-
fying the following condition: -

¢ =1 (modk), ¢ =r (modD), the congruence f(z*) =0 (modgq) is
soluble provided that (r, D) =1, and r =1 (mod (D, k)).

The Dirichlet demsity o of this” set of primes satisfies the inequality

of) < el

C(fikp([k, DY) ~  — x C(f)ke([k, D))’

where
1 if f 18 nonsymmetric,
2 f f is symmetric,

n = degf, and c(f), C(f) denote certain positive integers depending on f.

Notation. For a field 2 ¢ K, Ng/,(-) is the norm from K to R,
N(:) = Ngo(-) if K is fixed. @ is the rational field, {, = ¢*™*. If the
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extension k,/k, is abelian, f(k,/k,) denotes its conductor. If a, b are
ideals and F is a positive integer, then a ~ b (mod F') means that (a, #)
=(b,F) =1 and a/b = (a), a =1 (modF) and a is totally positive
(a > 0). For z real, [#] denotes the integer part of . The k-th residue
power symbol is denoted by ( —),. For a field 2, |2| denotes the absolute
degree of Q. ' 4

Proof of Theorem 1. Put
ag(x—alp) if a/f is rational,
ag(x—alf)(x—pBJa) if a/p is irrational,

o -|

where f has rational integer coefficients, a, > 0, and f is primitive.

Put further k& = 2k,, where k, denotes the constant of Theorem 1’.
Let D be any positive integer. D = D, D,, where D, contains only prime
factors dividing k¥ and (D,, k) = 1. Let r satisfy the congruences

k+1 (mod %),
2 (mod Dy).

D, is 0dd since k is even. Hence (r, Dk) =1 and r =1 (modk).
The polynomial f is irreducible. Since a and f are different from zero
and a/f is not a root of unity, f is different from # and is not cyclo-
tomic. By Theorem 1’ there exists a prime g not dividing the product
a, KL M disc(a,a/p) (where discé denotes the discriminant of &) such that
¢ = r (mod Dk) and the congruence f(2*) = 0 (modq) is soluble for some
rational integer #. Hence ((g—1)/k, D) =1. By Lemma 11 in [5] we
obtain g|P_,;. The theorem is proved.

LEMMA 1. Let 1 be a prime. If the congruence
a2+ ... +a, = 0 (mod??)

has more than n roots distinct (modl), then a,= 0 (modl*) fori =0,1,...,n.

Proof. The congruence ayz"+ ... +a, = 0 (mod?) has more than n
solutions distinct (modl). In virtue of Lagrange’s theorem, a, = la,, ...
.vey @, =la,, where a,...,a, are rational integers. The congruence
@@+ ... +a, = 0 (modl) has more than = solutions and, as before,
a =lay,...,a, =la,, where a,...,a, are rational integers. Hence
ay = lay,...,a, = Pa,, i.e. the assertion of the lemma holds.

LEMMA 2. Let | be a prime. If the congruence a,a"+ ... +a, =0
(modP) has roots x,,...,x, distinct (modl), then the following decomposi-
tion holds: -

@™+ ... +a, = ay(®x—a,) ... (x—2,) (Mmod??).
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Proof. The congruence
az"+ ... +a, —ay(@—2,) ... (v —2,) =0 (modP)

has # solutions z,, ..., 2, distinet (modl). By Lemma 1, all coefficients
of the polynomial appearing on the left-hand side are divisible by 7,
which was to be proved.

LEMMA 3. Let K/Q2 be an abelian extension, let f be its conductor, and
a € Q. If m i3 an integral tdeal of 2 prime to a and to f, then there exists
an a € K prime to m such that

a6 = Ny g(a) (mod m).

Proof. Let p"jjm (}), »> 0, p a prime ideal of 2. By formula (5')
in [2] (Teil II, p. 26),
(%7)
=1,
P

where (a,pK) is the norm residue symbol. By II in [2] (Teil II, p. 33),

there exists an a, € K prime to p such that
@ = Ngo(ay) (modp®).

Thus for a solution of the system of congruences it suffices to take
a = a, (modyp’) for p’|m.

LEMMA 4. Let ky be an abelian field, and k a positive integer. Assume
that N, denotes the degree of k,, and g(x) i8 the minimal polynomial of an
integer 0 such that ks = Q(0). If an integral ideal a of k, and a positive inie-
ger F satisfy the condition

F =0 (modk(2N,)!discg), Na=1 (modk),

Na—-1

) (a, F)=1, ( % ’F):"]-y

then there exists a polynomial f,(x) such that the polynomials f,(x) and
Ja(x) = (fi(x) —1)/k satisfy the assumptions of conjecture H. Moreover,
if ¢ = f,(x) 8 prime for some positive integer x, then ¢ = Nq, q ~ a~ ' (mod F),
where q 18 a prime ideal of degree 1 in k,.

Proof. By Nagell’s theorem there exists a prime ! > FNgq such that
the following congruences are soluble:

(1) g(x) =0(modl), Py, (y) =0(modl), f(z) =0 (modl),

(!) p’ll m means that p’| m and p"+14 m.
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where @ is the N,-th cyclotomic polynomial, and f(2) = 2"1+Na-+l.
Every prime factor of @y either divides N, or satisfies I =1 (mod N,),
and since the first case is excluded by ! > F, N,|F, we infer that | =1
(mod N,) and the congruence f(z) = 0 (modl) has N, solutions distinct
(modl), say 2, ...,2y . The existence of rational integers z, ..., 2y
with 2; = z;(modl) and f(z) = 0 (modl’) follows now from Hensel’s
lemma, and Lemma 2 gives

Ny
(2) f(z) = [] (2 —2) (modP).

f=1

Since (a, kI’F) = 1, there exists an integral ideal b, of k, such that
(3) ab, =yy, (b, Na) =1, y, =1 (mOdkPF)y 71> 0.

Since ! + discg, Il must be prime to disck, and the solvability of g(=)
= 0 (modl) implies that ! splits completely in k,:

(4) l=ll .“['Nl’

I; being distinct and of degree 1.
By Ohinese remainder theorem, for k, there exists an integer y,
(y1 € k) satisfying the system of congruences

© 1 (mod kF),
=) -2 (modB) (i=1,..., M),
(8") N(y)) =2/Nb,(modNa), y:>0,

where 2; are rational integers occurring in factorization (2). (Note that if y,
is not totally positive, then y,+ 2kl FNa is totally positive for a suffi-
ciently large positive integer #.) Congruence .(5’) is soluble in virtue of
Lemma 3, since (N a, 2N b,disck,) = 1 by (3), (i) and disck,|discg.

Put

(6) Y = V1¥a-

Let 4 be any totally positive integer generating k, and let z be a
positive integer different from all numbers

(7) Py
(N kFT (4 —p)

where £ denotes the i-th conjugate of & with respect to @, u™ = pu,
Y0 — .

Put
(8) I = y+kP(Na)Bau.

(t=2,...,Ny),
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-Oondition (7) means that I"' #« I'® for ¢ = 2, ..., N,, thus I' gener-
ates ky. Moreover, I' > 0.

Put
fie) =T ana g =BEE
By (8), (6) and (3) we have
(9) I' =ab,
where b is an integral ideal of k,. Hence
(10) N(I') = NaNb.
By (8), (6), (3) and (5) we obtain
(11) I'=y =y,9, =1(modkF), N(I') =1 (modkF).
By (10),

N(FNaz+T) = N(I') = 0 (mod Na),

which means that the polynomial f,(z) has rational integer coefficients.
We have f;(x) = f3(x)/kNa, where f3() = N(FNax+I')—Na. Since
k\F, we get

fs(@) =N(I')—Na = Na(Nb—1) = 0 (modkNa)

because Nb =1 (mod %) by (10), (11) and (i). This means that f;(z) has
rational integer coefficients. The polynomials f, (z) and f,(«) have positive
leading coefficients. The leading coefficient ¢ of f,(x)fs(2) is given by

(12) ¢ = —’];-F’Nl(l\’a)””'l'2 .

By (10),
Np—1

(13) fi(0) =Nb  and  f3(0) =———.

By (10), (8), (6), (3) and (),
NaNb = N(I') = N(y) = NaNb,N(yy) =2Na(mod(Na)¥.
Hence
(14) Nb =2 (modNg).-
By (10), (11) and (i),

(15) (Wb, F) = ( oLt

,F)=1;

By (10) we have the identity

N(I')—-1 Na—1 Nb-1
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Hence, by (11), (13), (15), (14) and (i) we obtain
(16) (f1(0)f2(0), FNa) =1

since 2|F. By (12) this means that the polynomial f;(x)f,(x) is primitive.
Further, since (2V,)!|F, from (16) we get (f,(0)fs(0), (2N1)!) =1. In virtue
of Lagrange’s theorem this implies that f;(«)f;(#) has no fixed factor
greater than 1. The polynomial f,(z) is irreducible since I" generates the
field k.

Since %, is normal, there exists an automorphism o; of k, such that

ol =1, oo=1 (i=1,...,N)),

where [; are prime ideals of k, occurring in factorization (4). By (8), (6), (3)
and (5) we obtain

I'= —2,(modB) (i =1,...,N,).
Hence
o, = —z;(mod) (¢ =1,...,N,).

According to the definition of fy(x) we get further

N zM
i@ = [ FNos+ o) —Na = [[ (FNaw—2) —Na
f=1 Pt
= (FNa)"a™ +1 (mod 1})

by (2) and the definition of f(z). Thus
fs(@) = (FNa)M1aM 41 (mod I?),

gince I is unramified in k,. N,=degf; and, besides, as we know, l > FNa.

In virtue of Eisenstein’s criterion the polynomial f,(x)=F,()/kNa
i8 irreducible. Thus we have shown that the polynomials f,(2) and f,(x)
satisfy the assumptions of conjecture H. If ¢ = f,(») is prime for a certain
x> 0, then ¢ = Nq, where q = (FNax+I')/a is an integral ideal of k,
by (9), hence a prime ideal of degree 1. We have q ~ a~! (mod F) by (11)
and I" » 0. The lemma is proved.

Proof of Theorem 2. Let & be a positive integer given in Theorem 1.
Let us put

K =L—4M, k,~=Q(%)=Q(Vﬁ), by = 52Q (G),

Ny=Iksly, N(:)= Nypyo(-).
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Let g be the minimal polynomial of an integer 6 such that k;=@(0)
and put

k———
F = k(2Ny)! udiscg)KLMlN(f( "—‘#—“’—’))
’ 2

By Theorem 1 there exists a prime g, such that

-1 F-1
17) Q0! Pgq- 1y (25 B), (qk "F[-k ]_!):1,

Since P, = 1, it follows that (¢,—1)/k > 1. Hence, by (17) and the
definition of F,

(18) go> F>2kKLM.

By (17),

a \(@—1)k

(19) (7) =1 (modg,).

Hence

a\* @

(20) (—B-) =3 (modg,).

We have

_VI+VE | VI-VEK

E=L-4M, M=o, a=—pr—,

VEL = 2M% —L+2M
for a suitable choice of square roots. Hence, by (20) and Fermat’s theorem,

@1  (VEIy = (2M)«o(-§)"°-(L-zm«o' _ VEL (modgy).

On the other hand,

(22) (VEL)% E( fL).VKL (modg,).
Since q, is odd, .
(KL) _1
¢

This means that g, splits in k, = Q(VEL); g, splits also in @(Zy)
since ¢, = 1 (mod %) by (17). Thus ¢, splits in the composed field k, = k,@({;)
(see [2], Teil I, p. 650, 17).
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There exists a prime ideal a of k; such that
(23) ¢ = Na.

Obviously, k, is abelian. By (17), (18) and the definition of F, condition
(i) of Lemma 4 holds. In view of Lemma 4, the conjecture H implies that
there exist infinitely many positive integers # such that ¢ = f;(») and
P = fi(x) are primes. Again by Lemma 4,

(24) g=DNgq, q~a'(modF),

where q is a prime ideal of degree 1 in ,.
By Euler’s criterion, (19), (23), and (18) we have

(25) (ﬂ)k =1

a

By (24) and (23) we get ¢ = ¢;-'.(mod F), ¢ = 1 (modk) (k, contains ).
Hence by (18) and the definition of F, (¢, xk KLM) = 1. By (24) and (25),

o172 () =

in virtue of Artin’s reciprocity law and Euler’s criterion. Hence
q1Pq-1yla, B). Since (¢—1)/k = p, by (24) we obtain

(26) q\Py(a, B).

For a moment we may assume without loss of generality that
L > 0. Then for K > 0, in virtue of inequality (5) in [3], we have

1+;/E)v-=
2

1Py (a, B)I >(

and for K < 0, in virtue of (5') also in [3], we obtain
(27) P, (a, B)| > (V2)»~6*  for p> N(a, f).

Thus, in any case, for p large enough we have |P,(a, f)| > kp+1 = g,
and (26) implies that P,(a, ) is composite. Thus the assertion of Theorem 2
follows. ‘

Remark. Using Baker’s theorem [1] one can obtein an inequality
stronger than (27), namely

|P,(a, B)| > (V2)P-1\%?

where o0, = ¢,(a, 8), p > 2, provided L>0, K< 0, M # 0, and a/f is
not a root of unity.
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