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1. Introduction. In [1], Boyarsky and Scarowsky have shown that a
central limit theorem holds for a class of piecewise C? transformations from
an interval into itself with slopes of absolute value greater than 1 and taking
partition points into partition points. A central limit theorem was given also
by Tran Vinh-Hien [10] for a class of Rényi’s transformations and by
Ishitani [3] for a class of piecewise linear transformations. The purpose of
our paper is to prove a central limit theorem for piecewise convex transform-
ations which not necessarily satisfy the assumptions of the theorem given
in [1].

In Section 2 we state the main result and in Section 3 we give
preparatory lemmas for the proof of the theorem and we prove the theorem.

2. A central limit theorem. Let ([0, 1], X, m) be a probability space with
Lebesgue measure m and let 7: [0, 1] - [0, 1] be a transformation of the
unit interval into itself satisfying the following conditions:

(a) There exists a partition 0 =g, <a; <... <a, =1 of the unit inter-
val such that for each integer i (i =1, 2, ..., p) the restriction 1; of 7 to the
open interval (a;_,, a;) is a C2-function which can be extended to the closed
interval [a;_,, a;] as a C?-function.

(®) 7 =1, _,.qy (=1,2,..., p) are convex.

(C) ‘t,-(a,-_l) = O (i = 1, 2, ceey p).

(d) t([ao, a,]) = [0, 1].

(e) The inequality
@i’ (x) z

wig| T SPIACGN {1+ 2, 3) <1

s = sup

i,x

holds, where 6; = 2—card {{r(+), t(a—)} n {0, 1}} and ¢; =1, !.
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It is well known (see [4] and [7]) that for such a transformation there
exists a unique probabilistic, absolutely continuous t-invariant measure u
with density f, satisfying the following condition:

(1) 0<l/c<fy<c for some c > 0.

Under the above assumptions on the transformation t: [0, 1] — [0, 1]
we shall prove the following

THEOREM 1. If either f is a function of bounded variation over [0, 1] or f is
Hdolder continuous, then

@ o =E,(f~E,*+2 ¥ E,[(f=E.f) (for—E, /)] < oo,
i=1

3) lim p%—]—_ ni (fOTj—E"f)<Z}=¢(Z),
nex (\/nj=0
n—-1
4) limm{——lj—_ Y (forf—E,,,(fOtf))<z%=d>(z),
n-x  ( 'nj=o

1 1
where E, f= | fdu, E,(fot)) = [ for/dm, and
0 0

r 2

1 —t?
expl=—=)dt if 6 >0,
\/ 2no -[ P(202> yo

- %

0 ifz<0
1{1 ifz=0

d(z) = |
if 6 =0.

3. Auxiliary lemmas and the proof of Theorem 1. Let ([0, 1], 2, v) be a
measure space with o-finite measure v and let L' ([0, 1], X, v) be the space of
all integrable functions defined on [0, 1]. For a nonsingular transformation
t: [0,1]-F0,1] (v(t7'(4)) =0 whenever v(4)=0) we define the
Frobenius-Perron operator

P.: I(0,1], 2,v)> L ([0, 1], Z, )
by the formulav
[P fav= [ fdv,

A RV

which is valid for each measurable set 4 < [0, 1]. It is well known that the
operator P, is linear and continuous and, in particular, satisfies the condition
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1 1
) [ (P f) (x)g(x)dv = gf(JC)g(t (x))dv
0

for any fel!([0, 1], Z, v) and any bounded g.

In the sequel we denote by P, and P, the Frobenius-Perron operators
defined on I!([0, 1], Z, w) and L‘([O 1], Z, m), respectnvely

Now we are able to state the following

LemMA 1. If 1 satisfies the assumptions (a)-(e), then for any function f > 0
of bounded variation we have

1
(6) (P21) =1l 1) < 5" [Mullf 10+ M3 /11,

1 1
(7) P21 () =Lo N Wyl < STV 14 So 1)
where \l/ f denotes the variation of f over the interval [0, 1], M, = 2c \1/ Jo»
0 ‘ 0

1
M, =(\/ fo+c¢)c, and c is defined*in (1).
0

The proof of this lemma is given in [4].
We shall prove the following

LemMMA 2. If the transformation 1 satisfies the assumptions (a) -(e), then for
any function g such that 0 < g < D < oo for some D and any function f > 0 of
bounded variation we have

1

® |f9(z"(x)Sf(x)du— Igdu Ifdul " (M1l 1, + M \/f)Igdu

o

and, consequently, for any measurable set B and any union A = U A; of
intervals A; i=1

) |1 ((z="(B)) ~ 4)— (A) 1(B)| < s"(M; + M, - 2r) u(B).

Proof. The first part of the thesis is a simple consequence of (5) and
Lemma 1. The second part can be obtained from (8) setting g = x5 and f
= x4, Where xp and x, denote the indicator functions of the sets B and A,
respectively.

Let x, be a process on the probablhty space ([0, 1], X, u) given by the
formula

Xn = x("),

where

p
X= D % Xa_q a1 With o; 3 a; for i #j.

i=1
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Denote by 9 the o-field generated by the sets of the form

{xe[0, 1]: (xx(x), ..., xi(x))e 4},
where 4 < R'"**! is an (I—k+ 1)-dimensional cube.
" It is easy to see that MY is generated by the set of intervals
@1, a)}f= 1.
We have the following
LEMMA 3. If t satisfies the assumptions of Theorem 1, then yx, is a
stationary process with the strong mixing coefficients

a(k) = sup sup |u(A N B)—pu(A)u(B)

Aem) Bem®
satisfying the inequalities
(10) a(k) < s*(M; +2pM,),
where M, and M, appear in Lemma 1 and p is given in condition (a).

Proof. This lemma is a simple consequence of Lemma 2 and the fact
that the measure u is invariant under 7.

Proof of Theorem 1. By Lemma 3, to show (2) and (3) it is sufficient
to prove the condition imposed in Theorem 18.6.2 of [2]. Thus, we have only
to prove

(11) E“|f|2+6 < o0,
(12) i [E,|f—E, {f|T&}|@+ a0 +a]a+a12+ < o
k=1
where E, {f| 9} is the conditional expectation of f given a o-field M, and
u

(13) (a(m)’?*? < o0

1

TlMg

for some 6 > 0 and for any f satisfying the assumptions of Theorem 1.

Since f is of bounded variation and a(n) satisfies (10), inequalities (11)
and (13) are obvious. Therefore, it remains only to prove (12). It is easy to
verify that 9§ is generated by the intervals of the form

O~

(14) f_i(aj,-—l, aj,-),

i=1

where a;, occur in condition (a).
Denote by Q, the set of intervals of the form (14). It is obvious that the
length of each interval from Q, is not greater than (inf|t’|)"% that is

(15) m(A) < (inf|z") ™"
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for every AeQ,, where (inf|t’])~! < s < 1. For any function f of bounded
variation, by (1) and (15), we have

— 2 __!__ ]2‘1
E,|f—E, {f19%}| sAGZth[f #(A)ifdu u

< T JVIP<(V) T [N

Aer A 0 AQ A A
1
<(\o/f) EQ (\/f) sup 1(A)
k

\S

1
< (\0/ f)Pec(infle])~*.

Hence, since I = I* for 6 = (2+)/(1+6) < 2, we obtain (12).
Now, let f be Holder continuous. We have

max |f—E, {f|9%}| < max sup |f— — [ fd #‘
[0,1] AeQ; 4 (A)
< max sup |f(x)—f(Y)| < K(m(A)f < K((inf|)*)~*

AeQy x,yeAd
for some K >0 and a > 0. This yields (12) and completes the proof of (2)

and (3).
Now we prove (4). Let

g (for*—E,f)

w—‘

and

—

|
— Y (fot*—E,(fo1").
J/n o

Z,,

We have
|E, (exp(i¢zs))— En (exp (i&z3))
< |E, (exp(i€z})) — Ep (exp(i€z})) + |Enm (exp(iéz})) — En (exp (iEz2))]

- exp{ }1 3 (foe —Euf)}|+

}(E E,,)exp{\/'—uz (fot* —Euf)H

<E, +E,

- exp{ﬁ T (for —Enf)}

k=0

r+1
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+E,, l—exp{-i—f_ i (for"—E,,f)}|+
Jnk=o

+

—expd ¥ (fork— ‘ }
+E, |1 exp{\/'.“;)(fo*c E.(fot%)

l—exp%% k:iﬂ (E,,f—Em(fork))}

Hence, setting r = [logn], by (7) we obtain
lim |E, (exp(i¢z}))—En(exp(iéz2) = 0

uniformly on any bounded interval. This gives us (4) and completes the proof
of Theorem 1.

Under the same assumptions as in Theorem 1, without any difficulties
we may prove the following

THEOREM 2. If ¢ > 0, then

+E,,

n— z 2
lim v{—\;—'_’ t=;(f01"—E\,(fOt"))<z}=\/;_Tw f exp(—#)dt

n—>aC - A
whenever
dv 1 dy
O<inf— and — <
dm \o/ dm
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