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ON ALMOST POLYNOMIAL FUNCTIONS
BY
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1. Let f be a real-valued function defined on the set R of all real
numbers. We say that f is almost additive iff the relation

fl@e+y) =fl@)+fly) ~

holds for almost all (z,y)eR X R (in the sense of Lebesgue’s plane
measure).

N. G. de Bruijn [1] and, independently, W. B. Jurkat [4] gave an
affirmative answer to the following question raised by P. Erdos [2]: If
f: R— R is an almost additive function, does there exist a function
g: R — R such that

g(z+y) = g(x)+9(y)

for all (x,y)eRx R and such that f(x) = g(z) almost everywhere (in
the sense of Lebesgue’s lingar measure)?
In [1] we can find also some natural generalizations of this problem.
The analogous problem for convex functions has been recently solved
in affirmative by M. Kuczma [5].
A similar problem appears in the case of polynomial functions.
Definition 1. We say that f: R — R is a polynomial function (almost
polynomial function) of the n-th order iff the relation

(1) A3H (@) = 0

holds for all (r,y)eR X R (for almost all (x,y)eR X R), where Alf(x)
denotes the finite difference of p-th order of f with increment y ().

Thus we can ask if for a given almost polynomial function f of n-th
order there exists a polynomial function g of the same order and such that
f(x) = g(x) almost everywhere in R.

(1) In the literature we meet usually the syﬁlbol Ahf(x) with k> 0, but an

elementary calculation shows that the relations A% f(x) = 0 for h > 0 and A,’; f(x) =0
for yeR are equivalent.
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The answer is positive. It results as a particular case of theorem 1.

2. It follows by induction that we can write (1) in the form

n+1
(2) 2 (s ("}7) f@+iy) =0
or, equivalently, in the form
n+1
3) f@) = 3 (=17 ("7 ) fla+iy).

In the sequel we shall use both these forms.
Deviating slightly from the terminology adopted by de Bruijn let
us introduce the following notions:

Definition 2. A non-empty family #* of subsets of k-dimensional

euclidean space R¥ is called a linearly invariant proper ideal (2) iff
(i) A, Be #* implies A U Be #¥,

(ii) Ae#* B c A implies Be #F,

(iii) R¥¢ ¥,

(iv) for every real number a # 0, feR*, and Ae¢S* we have
ad 4 BeSF* (3).

It is easily seen that the family #* of all subsets of the space R*
with the Iebesgue measure zero is a linearly invariant proper ideal. Simi-
larly, families #* and &} of all sets of the first category in R* and of all
sets with the finite outer Lebesgue measure in R¥, are also linearly inva-
riant proper ideals.

Definition 3. We say that two linearly invariant proper ideals 2
and S! are conjugate iff for every M e #? there exists a set Ue f' such
that for every z¢ U the set

(4) Ve ={y: (z,y)e M}
belongs to £

Remark 1. In view of Fubini’s theorem the ideals %3, #%, ¥} and
Ly, F', &} are, respectively, conjugate.

Let #! be a given ideal on the real line. It generates a certain ideal
on the plane in a natural way. Namely, let n(#') be the family consisting
of all subsets of R® which are of the form (S x R) U (R x 8) with Se ./,
and of all their subsets.

It can be easily checked that if .#' is a linearly invariant proper
ideal, then so is also n(#'), and that =(#') and ! are conjugate.

(3) A non-empty family #% fulfilling (i) and (ii) is called an ideal (cf., e.g., [6]).
The word “proper” refers to (iii) and “linearly invariant” to (iv).

(®) ad+ 8 & {: ¢ = aa+B,asd}.
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Definition 4. Let #* be a linearly invariant proper ideal. We say
that f: R — R is an almost polynomial function of n-th order with respect
to #? iff there exists a set M e .#* such that relation (1) holds for all (z, y)
eR*\ M.

Remark 2. For #? = %3 this notion reduces to that of an almost
polynomial function of n-th order as defined in Definition 1.

3. Now, we shall prove the following:

THEOREM 1. Let S* and S' be conjugate linearly invariant proper
ideals. If f: R— R is an almost polynomial function of n-th order with
respect to #2, then there exists exactly one polynomial function g of n-th order
and a set Ue S such that f(z) = g(x) for all 24 U.

Proof. There exists a set Me#* such that relation (1) holds for
all (x,y)¢ M. Let us put

UE (o V401,
where V, is given by (4). Since #? and 4! are conjugate, we have Ue.#'.
To every xeR we assign a set A, e s as follows:
n+1
A, = —(U—2x).
i=1
Let ¢: R - R be an arbitrary function such that
(a) ¢(z) = 0 for z¢ U,
(b) p(x)¢gd, for zeU.
Condition. (b) implies that for 2¢ U we have

2+ip(x)¢dU for¢=1,2,...,n+1.

In the sequel the function ¢ () is regarded as fixed.
We put

n+1

(5) 9@y L 3 (=15 (") flo+ip(@).

i
i=1

It is obvious that f(z) = g(x) for x¢U.

In order to show that g is a polynomial function of n-th order we
shall first prove that

n+l

(6) 9@ = D (—1("T!) flothy)  for yed,.
k=1

In fact, let us fix arbitrarily an zeR and a y¢4,. Since p(x), y¢A,,
the sets V., ., and V., ., are elements of 4' for i,k =1,2,...,n+1.

7 — Colloquium Mathematicum XXIV.1
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Thus there exists at least one y(y) such that

n+1 1 n+1
y(y) ¢L_Jl Z (Verry—o(@)) U U (VH,-,,(I)——y)eJ‘.
Then we have
(7) x+kyt¢U, @@)+kp(W¢Voinyy YT Variom
and so, in particular,
(8) (@+ky, p(@)+*p(y)¢ M for k =1,2,...,n+1.

Now, let us note that for an arbitrary ¢, 1 <¢ <<n-+1, and for every
Yi¢ Vaiige there is (see (3))

nt+1

fletip@) = 3 (=1 (")) flo+ip (@) + Ry).

k=1
In particular, in virtue of (7) we may take y, = y+iy(y) and thus
we can write
n+1

9  fletip@) = X (=1 ("F) fo+ig @+ kly +ivw)
k=1

n+1

= g (— 1)1 (nz-l) f(w—l- ky +i(p(2) + k'/’(?l))).

Finally, (5) and (9) give

n+1 ) 1 n+1 1
9@ = 3 (=17 ("7) X0 (") s+ by + il )+ Rp @)
n+1

"Z(— 1 nH)Z(_1),-_1(n:_tl)f(a;+ky+i(¢(x)+k_w(y))),

1=1

whence (6) results in virtue of (3) and (8).
Now, let us fix arbitrary u,veR. By (6) we can write

n+1

(10) glutjo) = 3 (=1 HME) st o+ Ry
for y;¢ A, vy J = - 0,1,...,n+1.
n+1 -
Let us take a y¢A4, = U I(U—u)e #', and choose {(y) such that
k=1

3/+j§(?/)¢Au+,-v for j =0,1,...,n+1,

(11)
v+kl(Y)¢ Vs, fork=1,2,...,n+1.
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Such a choice is always possible, because the set

n+1 1 ntl 1
U ’T(Au+7'v—?/) v U —(Vu+ky"'"v)
i=1 ) k=1 k

belongs to .
Since y +j{(y)¢A, .4, We obtain from (10) that

n-+1

(12) glutjo) = X (=18 ("F) flutjo+ kly +i(v))
k=1

n+1 :

= 3 0 (L sl e+ k)

for j =0,1,...,n4+1.
Finally, from (2) and (12) we have

n+1

a3gw) = 3 (=17 gtu-+iv)

n+1 , nt1
= Z (_1)n+l-7‘ ('n-;—l) 2 (_l)k—l (ﬂ‘]:l) f(u—}—ky-}—j (v—l—kC(y)))
j=0 k=1
N nt1) O n+tl
= 2 (=1 (") Y (= (M) f(u Ry i o+ R @) = 0
k=1 j=0

in view of the fact that (u-+ky,v+k{(y))¢ M for k =1,2,...,n+1
(see (11)).

Thus g(x) is a polynomial function of n-th order.

In order to prove the uniqueness it is sufficient to observe that two
polynomial functions g,, g, of n-th order which coincide besides a set
Se#' are identical.

In fact, let z,e R. We have, by (3), for every y,

n+1

gi(@) = Y (-1 ("T) gy (@ +iy),

=1
n+1

ga(@) = Y (=1 ("1 e+ im).

Now, it is sufficient to take a y such that xy+iy¢Sfor¢ =1,2,...,2+1,
which is possible, since

nt+l 1

U —(8—ag)e s

i=1



100 R. GER

Then g,(xy+ty) = g,(w+ty)for< =1,2,...,n+1, and consequently
g.(zy) = g2(x,), which completes the proof.

4. In the case #* = &}, #' = #] one can prove a little more. Namely,
the following theorem is true:

THEOREM 2. If (1) holds except for (z,y)e M < R* m, (M) << oo (%),
then f i8 equal to a polynomial function g of n-th order almost everywhere
in R (in particular, f is almost polynomial of n-th order).

Proof. Let us fix positive real numbers a and § such that m (M) < B
and let

v 2o mvy> L,
where V, is given by (4). By Fubini’s theorem, m, (U) < a.

Now, by the same argument as in the proof of theorem 1, we obtain
that there exists a polynomial function g of n-th order such that f(x)
= ¢g(x) for x¢ U (note that in view of (6) g does not depend on a). Thus,
letting a tend to zero we obtain our assertion.

Similarly, following [1] we can obtain a stronger result in the case
where the ideal #* consists of the sets of the form 8, x §,, where §,, S,¢ #!
(cf. also [3]). Namely, we have the following

THEOREM 3. Let S' be a proper linearly invariant ideal on the real
line. If A3 'f(x) = 0 for all x,y¢Se f, then f is a polynomial function of
n-th order.

Proof. Theorem 1 with #* = n(f‘)‘implies the existence of a poly-
nomial function g of n-th order such that
= {z: f(x) # g(@)}e S ‘
Observe that we can write (1) in an equivalent form

n+1

1) fle+y = {r@ +Z ") fe+im)-

According to our hypothesis, (13) holds for all x, y¢8.
Let us take an arbitrary z,e¢R. Since the set

n+l 1
(TV8) U (@—8) v U 1= T—ja)
2 1—)J
belongs to £', we can find an « such that z¢T U S, z,—x¢8S, z+
+j(®o—2)¢T for j = 2,3,...,n+1. Thus, for y = 2,—, we have

(*) me(M) denotes here the outer Lebesgue measure of M,
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(@) = f(z+y) ”———lf( +§: (n+l)f(a;+]y)}
n+1
=Tl 2 P (") gte+in] = g@+) = g0,

which ends the proof.

Remark 3. The results of the present paper extend almost without
any change to the case where the variables lie in a vector space over
rationals, or even in an abelian (additive) group in which the division by
integers can be always uniquely performed.
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