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In the theory of universal algebras a great progress has been made
recently, and wuniversal algebras have been dealt with by several
authors from different points of view. However, to the best of author’s
knowledge, universal algebras with partial order or lattice-order have
not been investigated systematically. The aim of this paper* is to call
attention to partially ordered universal algebras and to point out some
directions which — according to the author’s opinion — deserve more
attention.

The paper does not contain essentially new results. It merely gives
some basic definitions and in few cases it shows that the known methods
can be applied (with slight generalizations) to derive results which are
universal algebraic in character.

The relevant discussion consists of two parts. The first one deals
with the fundamental concepts and some properties of algebras (1)
which admit full orders or are subdirect unions of such algebras. A brief
treatment of order topology and completion processes is also given.
The second part will show how every algebra gives rise to a lattice-
ordered algebra, which is simply the algebra of all (or some only) its
subalgebras. For these algebras the analogues to a number of theorems
known for groups and rings can be obtained without any difficulty.

1. Fundamental concepts. Let (4;F) be an algebra, where 4 denotes
the underlying set and F is the family of fundamental operations on A.
All the operations f in F' are supposed to be finitary. We assume tacitly
that the operations in A satisfy some given set of axioms, though in most
cases no explicit mention will be made of them.

Let further A also be a partially ordered set under a relation <.

* Presented to the Conference on General Algebra, held in Warsaw, September
7-11, 1964.
(') We unse “universal algebra” and “algebra” synonymously.
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An n-ary operation f on A is said to satisfy a monotony law with the
monotony domain C; (where C; is a subset of A) if

1. @4, ..., €0y implies f(x, ..., x,) <0y,

2. for each ¢ (¢ = 1,...,n), f is either isotone or antitone or both
in the variable x;, that is, #; < y; and a;, y;e A imply for all =, ..., x; 4,
Dii1y ey XyeC; either

(1) T(@yy ooy gy ooey @) <F(@yyoeny Yiyonny B)

or (1) with < replaced by = or by =, respectively (?).

According to that f is called of monotony type 1, | or | in the variable
2;. In case when x; < y; implies strict inequality in (1), we say that f
obeys the strict monotony law.

By a partially ordered algebra we mean a set A such that

(i) (4; F") is an algebra,

(ii) (4, <) is a partially ordered set,

(iii) with each mn-ary operation feF there is associated a symbol
39ty ..., vh>, where () is the monotony domain of f and y} (=1, |
or |) denotes the monotony type of f in @; (*).

We shall denote the just defined partially ordered algebra as (45 F, <)
or more explicitly as

(2) (A5 F, <, Cp5 91, oeny YiD1er).

For instance (4), if 4 is a group and F# consists of a binary (the
group operation), a unary (the inverse) and a nullary operation (the
neutral element), then all the three operations have the whole of A as
monotony domains, and they are of the monotony types (1, 1), (}) and
(}), respectively.

(2) The definition of monotony domain given above is not the most general
one for which our following arguments are valid. In fact, condition 1 is not essential.
But since this rather natural condition is satisfied in all cases of interest, we assume
it. Note that in the traditional particular cases only the multiplication in rings is an
operation for which the monotony domain is not the whole ring. It would be natural
to suppose that Oy is never void; however, should we do so, the definition of subal-
gebras to be given had to be changed by adding a condition guaranteeing that the
monotony domains are not void.

(®) This definition of partially ordered algebras is essentially the same as that
given in [2], p. 5. A more general definition can allow an operation to be isotone in
a subset of A and antitone in another one. This possibility for semigroups has been
considered by Tamari [9] and Clifford [1].

(4) We shall frequently refer to partially ordered groups, rings etc. On them
see e. g. [2].
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In most cases of interest the monotony domains coincide with the
set A, but sometimes they form a proper subsets of A. If ¢, ++ A, then
C; is usually of the form

Oy = {wed|x > e},

where eeA is some nullary operation. More generally, we shall say that
the monotony domain €; of fel is natural if it can be defined in the
form

(3) Op = {wed|I'y(2)},

where [%(x) is a meaningful sentence containing individual variables
Xy @y, ..., w In A, operations from F, the relation <, equality, negation,
disjunction, conjunction, implication, and is such that quantifiers
bind all of @, ..., ;. We may also allow k to vary on the non-negative
integers such that a quantifier binds k too. Roughly speaking, (; is natural
if it can be defined in terms of operations in # and order relation.

For example, in a partially ordered ring R the monotony domain
O, ={xweR|x = 0} of multiplication is natural, and it remains natural
if it i8 defined as the set of sums of squares.

It all the monotony domains C (feF) of a partially ordered algebra
(4; F, <) are natural, then the algebra will be called a natural partially
ordered algebra. The usual definitions of partially ordered groups, rings,
fields and semigroups indicate that they all are natural partially
ordered algebras. Natural partially ordered algebras may be denoted
by the symbol (5)

(4; F, <, <1y; 7’{7 ceey 7’{1>st)

where [y stands for the sentence in (3) defining .
If < defines a full (i. e. linear) order on A, the partially ordered
algebra (4; F, <) is called a fully (or linearly) ordered algebra. 1f <

defines a lattice-order, then it is a lattice-ordered algebra. In this case
the monotony laws may be written in either one of the equivalent forms:

J@ry ooy @iy ooy B )V (@, ooy Uiy ooy @) < flay, a5 5 BENV Yty v 50 Bia)s
J(@1y ooy @iy ooy @) Af(@yy oy Wiy oy @) = F(Bry oeey A Yay onny @),

for all @;, y;ed and all @;¢0; (j +# ) provided that f is of monotony
type 1 in the 4-th variable. For type | corresponding inequalities hold.

Partial order can be expressed in terms of a partial operation, call
it T, by defining aT b (a, beA) if and only if ¢ < b and putting, in that
case, a | b = a. The axioms for | are reformulations of axioms for
partial order.

(%) Our notation is not consequent in one respect. Namely, we do not mention
the axioms satisfied by the operations in F, but we do write out explicitly the axioms
of monotony.



118 L. FUCHS

Partially ordered algebras can be also considered from another
point of view which proved to be fruitful in the case of groups (see [3]).
It consists in introducing not everywhere defined binary operations,
the intersection A and the union v, by the following axioms:

1° for each acAd, ana and av a are defined and satisfy
ana =a, ave=a;
2° for all a,bed, if an b exists, then so does bAa, and

bra =anb,
and dually for the union v ;
3° foralla, b, ce A we have

(aAnd)Aec =an (bnac),

- whenever all intersections occurring here exist, and dually for the
union Vv ;
4° for all a,bed, if av b exists, then so does aa (avb), and

an(avb) =a,
and dually.

The transition from = to the partial operations A, v is wholly
obvious. In the opposite direction one defines @ < b if and only if an b
= @. This is equivalent to av b = b, for an b = a implies, by the dual
part of 4°, that bv (an b) = bv a exists and is equal to b; and conversely.

In terms of T or A, v partially ordered algebras are regarded as
partial algebras (i. e. algebras where operations need not be defined
for all n-tuples). In spite of the very close connection between the two
points of view, they are not equivalent if the corresponding categories
are considered. In fact, in the first case the morphisms are those homo-
morphisms of an algebra (4; F') into another one (B; F') which preserve
order relations, while in the second case it is also required that these
homomorphisms preserve intersections and unions whenever they exist
— which is a more restrictive condition (®). In what follows we shall
confine our attention to the first category, but it is to be kept in mind
that only the second point of view makes it possible to obtain results
yielding those on lattice-ordered algebras as special cases.

In accordance with our confinement we are going to define the
concepts of subalgebras and homomorphisms.

Let (A; F, <,<0;: 9, ..., vL>.r) be a partially ordered algebra.
If (B; F) is a subalgebra of (4; ) (in the pure algebraic sense), then

(%) In fact, intersection A can be regarded as an extension of the operation T
considered above.
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the restriction of < to B turns (B; F) into a partially ordered algebra
with C; ~ B as the monotony domain of feF; the monotony type
(¥1y ..., v4) of fin C; ~ B is the same as in C,. The algebra

(B; F, <, {Cy ~ B; ¥, o0y ¥brr)

is called a subalgebra of (A; F, <) (7).

In natural partially ordered algebras there is another way of defining
the notion of subalgebra. If (4; F, <, Iy; ¥l,..., ¥h)r) is a natural
partially ordered algebra, then the monotony domain of an operation
feF in (B; F, <) can be defined by the same formula, with the variables
restricted to B and preserving the monotony types of f. We shall call

Ly By <, <Pf5 7{7 --"V{z>feF>

a natural subalgebra of the given partially ordered algebra, provided it -
is a partially ordered algebra. If in a natural partially ordered algebra
the subalgebras coincide with the natural subalgebras, then we shall
call it half-smooth. It is evident that if every monotony domain is the
whole A or if the formula /(x) contains no individual variables except ,
then the partially ordered algebra is half-smooth. Thus partially ordered
groups and semigroups are half-smooth, and so are partially ordered rings.

Note that the property of being half-smooth is hereditary for sub-
algebras.

Next let (4; F, <, 0y Pl en %fz>fEF) and (B; F, <, Dy
o] g ssaa y yﬁ),esp) be partially ordered algebras of the same type indicated
by using the same F to denote the families of fundamental oper-
ations and the same 9/, ..., ] for the monotony types of f both in A
and in B. Then a map

(5) p: A—+B

is called an o-homomorphism (o for order), if

1) ¢ is an algebraic homomorphism of the algebra (A4; F) into
(B; F),

2) ¢ is order-preserving, i.e. a; < a, in A implies ¢(a,) < @(a,)
in B,

3) @ maps O, into Dy for each feF.

The third condition is automatically satisfied if the monotony
domains exhaust 4 and B.

The map (5) is called an o-monomorphism if it is simultaneously
a monomorphism of the algebra (4; F') into the algebra (B; F') and an
o-homomorphism. An o-epimorphism ¢ is an o-homomorphism such that

(") If we would have assumed that the monotony domains could never be empty,
then in the definition of subalgebras we ought to have assume that B n Oy is not void.
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a) it is an epimorphism (i. e. it is surjective),

b) b, < b, in B implies that some preimages a; of b; satisfy a;, < a,
in 4,

¢) ¢ maps C; onto D; for each feF'.

Finally, an o-isomorphism is a one-to-one mapping which is an o-
homomorphism in both directions. Observe that an o-monomorphism
need not induce an o-isomorphism with the image.

The definition of a congruence relation 6 of a partially ordered
algebra (2) can be given if the congruence classes modf again form
a partially ordered algebra under the definition

(*) 0(a) < 6(b) if and only if a, < b, holds for some a,ef(a) and
some byel(b),

where 0(a) denotes the class mod 6 that contains a.

In general, the classes mod 0, where 6 is an algebraic congruence
relation of (4; F), do not form a partially ordered factor algebra
(A; F', <)/, not even if the classes mod f are convex subsets of 4. In
fact, under 6, neither antisymmetry nor transitivity is necessarily satis-
fied. Nevertheless, it is possible to show that under some special hypo-
theses on 6 or on (4; F: <), (4; F: <)/0 will be again a partially ordered
algebra. In such a case the monotony domain of f in (4; F, <)/6 is
defined to consist of the classes containing at least one element from
the monotony domain C; of f in A, and the monotony type of f in the
factor algebra is the same as previously. The arising algebra of classes
mod 6 is called the factor algebra of (2) mod®6.

In the case of mnatural partially ordered algebras (4;F, <,
L Y4y ooy Vhoser) there is yet another way of introducing the mono-
tony domains in the factor algebra, the one using the same sentence I
but with variables ranging over the elements of the factor. If we prefer
to do so, then we get the definition of a natural factor algebra, provided
it is actually a partially ordered algebra under the induced ordering.

Let us call a natural partially ordered algebra smooth if it is half-
smooth and if its factor algebras are the same as its natural factor
algebras. Clearly, a partially ordered algebra A is necessarily smooth
if €y coincides with A for every operation f; and partially ordered rings
are smooth too. It would be of interest to find conditions under which
natural partially ordered algebras are smooth (P 516).

We have the o-epimorphism theorem:

THEOREM 1. If ¢ is an o-epimorphism of the partially ordered algebra
(4; F, <, Cx 1, ..., V> rr) onto the partially ordered algebra (B; F, <,
(D vlseiy Y osew), then the relation 6 defined by

ay = ay(0) if and only if p(a,) = ¢(a,)
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is a congruence relation of (A; F, <), and
O(a) - q¢la), aed,
is an o-isomorphism of (A; ¥, <)/0 with (B; F, <).
The proof is straightforward and may be left to the reader.

2. Products of algebras. We are turning now our attention to different
kinds of direct products of partially ordered algebras.
Given a set of partially ordered algebras of the same type,

(A3; Fy <, 05 9L, ooy ¥0r),  Aed,

we can form their cartesian product 11(A;; F, <) in the following rather
obvious way. It is an algebra (4; F, <), where A4 is the cartesian product
of the underlying sets A, (1eA), the operations f are to be performed
componentwise and for any two elements of 4 one puts

s

’ =
Qoeeyg Ajy ...> < Qovoy bl,...>

if and only if, for each AeA, a; < b, holds in 4,. The cartesian product
of the monotony domains O} of f in the A, is taken as the monotony
domain €, of f in A, while the monotony type of fin A is its common
monotony type in the components. It is easy to check that (4; F, <,
{Cpyly ooy ¥h>sr), defined in this way, is again a partially ordered
algebra. Moreover, it is natural if so are the components, where the
sentence [/ is the same for every 4; and for A4, and /) containg no
disjunection.

The projection of (A; ¥, <) onto (4,;; F, <) is evidently an o-epi-
morphism for every i provided none of C; is empty.

Manifestly, if each (4,; F, <) is lattice-ordered, then so is their
cartesian product.

Having introduced the concept of the cartesian product and sub-
algebra, it is evident what should be meant by subdirect products.

An important special case is formed by algebras possessing a nullary
operation e (built up in terms of the fundamental operations feF) such
that ¢ s @ subalgebra (and hence every subalgebra contains e). It is possible
then to introduce the discrete direct product of algebras by requiring
that all but a finite number of components should be equal to e. Using
the same definitions for ordering and monotony domains it is obvious
that the diserete direct product of partially ordered algebras is a subalgebra
of their cartesian product. The components (A;; F, <, <0 v, ooy Vidsr)
will be — under the natural correspondence — o-isomorphic to sub-
algebras of the discrete direct product whenever e belongs to O} for
every felF'.

We can also speak of inner direct products if we make the following
definition.
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A partially ordered algebra (A; F, <, (Csyl, ..., vhour) is an
inner direct product of its subalgebras (d; F, <, (C; ~ Az 91, ooy vh05em)
if there is an o-isomorphism ¢ of (A4; F, <) with the discrete direct
product of the (A4,; F', <) such that, for each 1, ¢ maps a; (ed;) on
the vector with a; as A-th component and e elsewhere. It is easy to check
that this definition implies that either the element ¢ must be contained
in each O} or all €} (for some f) are void. Also, the 4, are necessarily
convex subalgebras (®).

The definition of inner direct product has the disadvantage that
it needs not be unique and it does not tell the precise way how to obtain
the vector with the A-th component a; and with the u-th component a,
from the wvectors with the A-th component a; and with the p-th
component a,, respectively, where their remaining components are equal
to e. If we wish to have an operation doing that, then we have to assume
the existence of an operation ¢ on A for which e is the neutral element;
and in order that the usual properties of direct products should be pre-
served, we also have to assume that g is a binary associative operation.
Accordingly, we introduce the following definition.

A partially ordered algebra (4; F, <) is called the direct union of
its subalgebras (4,; ¥, <), Aed, if

(i) in terms of the operations in F, a nullary operation e and a binary
operation g can be defined in such a way that A4 is a partially ordered
semigroup under ¢ with identity e;

(ii) A, as a partially ordered semigroup, is the discrete direct
product of its partially ordered subsemigroups A; with e;

(iii) e is a subalgebra of A4;

(iv) if 4,, A, are different and if a;ed,, a; e4,, then

Floony 90l @), o) = G(F oy @y o)y flons afy00))

for every m-ary operation feF;

(v) g(ay, ..., a;) belongs to the monotony domain C;, where a;e4
and 4,,..., Ay are different if and only if each a;eC;.

Since the operation ¢ has a distinguished role in the definition,
it is better to call, what we have defined under (i)-(v), a g-direct union.
Note that in view of (ii) the A4, are convex subalgebras of A.

Using theorems due to Simbireva [8] and Sik [7], it is easy to con-
clude:

THEOREM 2. Let (A; F, <) be a partially ordered algebra and g a
binary operation in A under which A is a partially ordered group. If A is
directed, then

(8) It is clear that inner cartesian products can also be defined.
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1. any two g-direct union decompositions of (A; F, <) have a common
refinement;
2. the g-direct factors of (A; F', <) form a Boolean algebra.

The proof is the same as for groups, only the fulfilment of conditions
(iv) and (v) must be verified, but this is straightforward.

Assume again that the algebras to be considered have a nullary
operation e such that e is a subalgebra. Then lexicographic products
over fully ordered index sets also make sense. Let A be a fully ordered
set and (A3 F, <, Ch v, ooy ¥irr), Aed, a set of partially ordered
algebras of the same type. Let I'4; denote the subset of the cartesian
product of the sets A4, which consists of all vectors <..., a;,...> whose
support {AeA|a; + e} is well-ordered in the ordering of A, and define
the lexicographic product I'(A;; F, <) of the (A;; F, <) with Aed as
the algebra (I'd;; F', <, {Cp ¥iy ..., ¥hosr) With componentwise oper-
ations and by putting <...,a;,...><< <.y by, ... if and only if a; < b;
for the first 2 for which a; +# b;. We let the monotony domain C; of felF
congist of all <..., a;,...> for which every a,, with leA, belongs to the
monotony domain of fin 4;. It is then a matter of routine to check:
if the operations feF obey the strict monotony law, then I'(A,;; F', <) will
be a partially ordered algebra containing (A;; F, <) as subalgebras (°).

Note that the hypothesis on the strictness of the monotony laws
is essential as shown by the rings. Also, if we have natural partially
ordered algebras to start with, then we don’t get in general a natural
partially ordered algebra as lexicographic product, but we do if all the
monotony domains coincide with the whole underlying set.

Obviously, the lexicographic product is fully ordered if all the
components are fully ordered. Under additional assumptions it is
possible to establish a refinement theorem on directed algebras (ef. [2],
p. 26).

3. 0-algebras. Given an algebra (4 ; #), in several cases it is desirable
to introduce in 4 an order relation < under Whi()h it is a fully ordered
algebra. If nothing is presupposed about the monotony domains of the
operations in F, then the problem of introducing < in 4 does not make
much sense in view of the fact that every set can be fully ordered. There-
fore, in order to have a meaningful problem (reducing to the corresponding
problems on groups and rings as special cases), we have to restrict our-
selves to algebras with a natural definition of monotony domains. More
explicitly, we assume that together with (4; F') we are also given

(%) If we start with a well-ordered set A, then we can get rid of the hypothesis
on the existence of ¢ in A. In this case monotony domains must be defined as for
cartesian products.



1. the defining formulas 7} of the monotony domains C; for each
JeF', expressed in terms of operations in F, order relation (to be defined),
element variables in 4, and logical operations in the manner described
in section 1;

2. the monotony types of f in ;.

Thus we are given (A; F, <., ..., v.>.r) and we proceed to
consider partial or linear orders in (4; F) such that (4; F, <,
Ty v, ...,;uL},«eF) is a partially or linearly ordered algebra. E. g. in
the case of rings A the monotony domains for all the operations are the
whole A4 except for multiplication whose monotony domain is defined
by the formula (x > 0); the monotony types of the operations are
enumerated in the axioms of partially ordered rings.

An algebra (4; F) with given Iz 9, ..., 9.> for all feF is called
an O-algebra, if it admits a linear order < such that (4;F, <,
Ly 7%y oovy Yhdser) is a fully ordered algebra. It is called an O*-algebra
if every partial order on A satisfying 1 and 2 above can be extended
to a linear order again with 1 and 2.

In the class of semigroups, groups or rings, the property of being
an O-algebra depends on the finitely generated subalgebras. Which other
classes of algebras have this property ? For obvious reasons, it seems
necessary to restrict ourselves to mnatural algebras (A; F, I 9], ...,
- yi),EF) which are half-smooth in every partial order. Under this
hypothesis we have:

ToreorEM 3. Let (A; F, Iyl ..., y£>fep) be an open senlence
algebra (*°) half-smooth in every partial order. Then it is an O-algebra if
and only if all of its finitely generated subalgebras are O-algebras.

Recall that an open sentence algebra is an algebra in which the
postulates on the operations are all open sentences in the sense of Me-
Kinsey [5]; i. e. they consist of individual variables in A, operations in ¥,
equality, negation, disjunction, conjunction, and implication, without any
quantifiers, but interpreted as if they were preceded by universal quanti-
fiers binding all individual variables (*!). Then the statement of Theo-
rem 3 follows at once from a more general result by B. II. Neumann [6].

It seems to be a rather hard problem to describe those classes of
algebras for which the O-algebras are necessarily O*-algebras. (Remember
that the abelian groups form such a class.)

Let (A; F) be an algebra with given U1, ..., y.> for all feF.
If it is an O-algebra, then — under the assumption of half-smoothness
— 80 are all its subalgebras, but the analogous statement for homo-
morphic images does not hold in general, as shown e. g. by groups. The

(1%) Thus we also assume that I7(z) is an open sentence.
(1) The order relation is then interpreted as a partial operation.
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cartesian product of O-algebras of the same type need not be an O-algebra
(ef. rings), but we can prove the following general result:

THEOREM 4. Let (A,; F) be a set of O-algebras with the same mono-

tony types of operations in F such that
(i) for each feF, the monotony domain of f coincides with A, for
every 4;

(ii) every m-ary operation (n > 1) in I obeys the strict monotony larw.

Then the cartesian product of the (A,; F) is again an O-algebra, and
so are their subdirect products.

By virtue of (i) we need only to show the statement for the
cartesian product. Take arbitrary but fixed full orders on the 4, and
well-order the index set /1 in some way. Then the lexicographic product
of the (4,; F, <) will be fully ordered and the monotony laws hold
with the whole of /74, as monotony domain.

Much more difficult problem arises if we consider a class .o/ of
algebras of the same type and ask under what circumstances a certain
subelass contains only O-algebras. For instance, assume that .o/ contains
enough free algebras or o7 is a class in which free products exist. It would
be of interest to know conditions guaranteeing that free algebras in .o/
are (-algebras or that free products of O-algebras are again O-algebras
(both are true for the class of groups and for the class of abelian groups).
Of course we suppose that 1 and 2 are prescribed. (P 517)

As to O*-algebras let us observe that even for the class of O*-groups
it is not known whether or not this class is closed under passage to sub-
groups. (P 518)

4. Varieties. Next we wish to consider varieties of partially ordered
algebras. We may evidently restrict ourselves ab initio to the case when
the class of underlying algebras is a variety. Also, since partial order
must be expressed in terms of everywhere defined operations (which are
evidently \/ and /), the varieties have to be defined in terms of certain
operations fe I’ together with \/ and (or) A. But also the monotony laws
ought to be expressed by identically valid equations. Hence the monotony
domains are natural and, moreover, they can be defined by a formula
like (3) in section 1, where /;(x) contains individual variables x, «,, ..., x;
in 4, operations from F, the operations \/ and /\ , equality and conjunction,
and if they are substituted in the monotony laws, then the formula
itself is preceded by universal quantifiers binding all @, ..., ;. For
instance, in lattice-ordered rings the monotony domain for multiplication
is defined by the formula (x#\/0). Furthermore, even the monotony laws
ought to be written in form of identities. In so-called function rings e. g.
the monotony laws for multiplication are: Yy, y, ¢

(V) (@V0) = y(x\V0)\V2(x\V0), (2VO)(yVz) = (2VO)yV (eV0)z.
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In general, the monotony laws are of the form (4) in section 1 with
< replaced by =, where the condition that certain elements should
belong to C; is replaced by substituting these elements by their defining
formulas 7. For the sake of brevity we shall call monotony laws of this
kind tdentical monotony laws.

We are particularly interested in the variety generated by the fully
ordered algebras in a certain variety ¥~ with a common family F of
fundamental operations. We add \/ and A to F and express monotony
laws as identical monotony laws in the subclass of fully ordered algebras
in 7.

THEOREM 5. Let¥" be a variety of algebras with fundamental operations
JeF and with preseribed identical monotony laws in terms of feF and \/, A
Let f7" denote the class of the fully ordered algebras in ¥~ with the given
monotony laws. If the algebras in 7~ are smooth, then the smallest variety
containing ¥~ with the operations in F and \/, )\ consists of subdirect prod-
ucts of algebras in 7.

In order to prove the assertion of the theorem, let us begin with
observing that by a well-known result of G. Birkhoff and a remark of
A. Tarski, the variety in question consists of all homomorphic images
of subalgebras of cartesian products of algebras in f#". Note that all the
algebras in the arising variety are lattices, and therefore their lattices
of congruence relations (as sublattices of the distributive lattices of all
congruence relations of lattices) are mnecessarily distributive. A recent
result of Jonsson [4] states that if all the algebras of the arising variety
have distributive lattices of congruence relations, then the variety
consists of subalgebras of cartesian products of homomorphic images
of ultraproducts (in the sense of J. f.0§) of algebras in the generating
class. In our present case the ultraproducts and homomorphic images
‘of algebras in 7" are again in f7", hence by making use of Jénsson’s theorem
we conclude that the variety in question consists of subalgebras of car-
tesian products of algebras in f#". Moreover, f#~ being closed with respect
to taking subalgebras, subalgebras of cartesian products are nothing
else than subdirect products. This completes the proof.

Note that the variety generated by f¥~ can be defined by equations
identically valid in 77, identical monotony laws and possibly additional
equations valid identically in each member of f#". For instance, in the
case of groups we have the single additional equation

@Ve)Ay & Vey = e,

while in the case of rings we have

@V OA@V0)(—2V0) =0 and (2 0)V(—2\/ 0)(y\/0) = 0
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for all =z, y. In general algebras the author has been unable to find
identically valid equations giving a necessary and sufficient condition
for an algebra to be representable as a subdireet product of fully ordered
algebras. (P 519)

5. Completion of partially ordered algebras. There are several methods
of completing partially ordered algebras. First we consider the Dedekind-
MaeNeille completion process.

We start with a partially ordered algebra A. Consider its non-
vacuous u-bounded subsets X (12). The correspondence

(6) X > X¥* = IL(U (X))

is a closure operation. Assuming A directed, the set A% of all closed
sets ¢ = OF is a conditionally complete lattice under set inclusion. Here
intersection is the same as intersection of sets, while union means the
closure of set union. The correspondence '

(7) a — a¥ = L(a)

is an isotone embedding of the partially ordered set 4 in 4%, preserving
\/ and A, whenever they exist.

Let f be an n-ary operation whose monotony domain is the whole A.
If f is isotone in each of ity variables, then for X, ..., X,eA* we define

(8) X, ey X)) = {U (@, ..., 2,) for all x;e X},

and we replace X; by U(X,) in the right-hand member of (8) if f happens
to be antitone in the variable ;. (Note that there is a Galois
correspondence between A¥* and the set of all U(X) with XeAd¥.) In
this way, the operations f with the whole of A as monotony domain can
be extended to A*; in fact, the correspondence (7) preserves these f’s.

However, the identities between operations of A carry over only
exceptionally to A¥*. In order to obtain a sufficient condition for an
identity to carry over to A%, let us extend the definition of f# for all
subsets X; of 4 bounded from above by the formula (8). In general we
have the obvious inclusion

fH( Xy, ..., Xp) € fHRAF, .., XD,

If here equality holds true (and if f is isotone in each variable), we shall
call f, for the sake of brevity, a coherent operation. We then have

THEOREM 6. Let (A;F, <) be a partially ordered algebra and A%
its Dedekind- MaeNeille completion. If
P(@yy ey Tp) = P(@1y .oy &) (Bged)

(12) u-bounded means bounded from above. U(X) and L(X) are the sets of
all upper and lower bounds for X in A.
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is an identity in A containing only coherent operations, then the corresponding
identity in A¥

PF (X, ey X)) = 9¥(Xyy ooy X)) (Xed¥)

is also valid.

The proof is straightforward by writing out ¢ and y explicitly.

In the theory of partially ordered groups it is shown that multi-
plication is coherent in the above sense. Hence, by the theorem, asso-
ciativity is preserved in A*. But the inverse is not coherent in groups,
and indeed a new condition must be imposed on a partially ordered
group G to guarantee G* to be a group again. That is a rather restric-
tive condition.

Let us turn now our attention to completions with respect to order
topology. The order topology is introduced into A4 in the usual fashion.
Let /1 be a wu-directed index set of fixed type, without greatest element.
The set {u,}., is isotone or antitone according to whether « < £ implies
Ug << Up OT U, = Ug. 1T {u,} is isotone and {v,} is antitone such that

U(..ojttgy...) =U(a), L(...,%,...) = L(b)

for some a,bed, then we write u,’a and V.40, and call ¢ and b the
o-limits of {u,; and {v,}, respectively. If to {®,}., there exist an iso-
tone set {wu,} and an antitone set {v,} such that

Uy < By <V, With  w,ta and wv,a,

then we write x, — a and call a the o-limit of {x,}-{x,} is also said to
o-converge to a. It is obvious that a constant set has an o-limit equal
to its members, the o-limits — if exist — are uniquely determined, and
cofinal subsets have the same o-limits.

The closed subsets B of A are defined by the property of containing
the o-limits of o-convergent subsets whose elements belong to B. Then A4
becomes a T',-space relatively to this topology.

In order to discover the continuity properties of the operations
feF, we verify the multiple limit property:

Lemma 1. Let (A; F, <) be a partially ordered algebra and feF an
n-ary operation such that for each 1,

(9) if @ — x;, then for every fized x; (j + 1),
JBys voiy B g o s B) —> 05 5555 Big o v 05 Ba)e

Then x — x; for each i implies

flay, oo, ap) e Fly g wiew g Bn)e
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Agsume that » >1. We prove by induction on % that zf — a;
(8 =0y cony k) IMPHEy f(Byy oy Bhy Bppyy y wuvs Bn) —> T By g a5 By 5505 B) fOT
all @,q,...,2,. If, for instance, f is isotone in its variables, and if
is an isotone set — @; such that wj < «j, then

Ua(f(u?a ceey Uk_1y Wiy Ly 19 =00y wn))
= Ua,ﬁ(f(uclly ceey ug-la ’sz, L1y eney wn))

Q Uu(f(“?’ s 5 MR 3 ul’iy Lhy1y ovey mn))

- Q U(f(21y «vny T—ry Uity Bip1y -+ 5 Zn))

= U(f(wl, cooy Ljey .--7mn))7

where the index at U denotes the varying index over which the upper
bounds are to be taken. In the other cases similar inference may be
applied.

To simplify our considerations, let us restrict ourselves to ordinary
sequences {x,} of type w, and assume that to each aeA there exist isotone
and antitone sequences {u,} and {v,} with o-limit a such that u, # a
# vp. In the general case the arguments are a bit more complicated,
but no essentially new ideas are necessary.

We have to assume the following conditions:

(a) if every infinite subsequence of a sequence contains a sub-
sequence o-converging to a, then the sequence o-converges to a;

(b) if ™™ is a double sequence such that ™™ — 2™ for varying m,
and if 2" — @, then there exists a subsequence of #™™ which o-converges
to .

Then we have the pure topological conclusion (13):

LemmA 2. Under (a) and (b), the o-convergence is equivalent to the.
convergence in the sense of order topology.
Now we have

TueoreM 7. If (A; F, <) is a partially ordered algebra in which
order convergence satisfies (a) and (b), and if the operations feF satisfy
condition (9) of Lemma 1, then (A; F) is a topological algebra in the order
topology.

We have to verify the continuity of the operations feF. Let
fleyy ..., @) =« and let ¥, (x;) (m =1,2,...) be systems of necigh-
bourhoods around x;, and, say, ¥7,(%;) 2 ¥ w1 (). If, given a neigh-
bourhood #” of @, no m satisfies f(#"(2,), ..., ¥ m(#s)) =¥, then there
exist elements «i'e?",(x;) such that f(a1",...,2%)¢¥?". By Lemma 2,

(13) Cf. [2], p. 31. It follows from our hypothesis on A that no element in A
is isolated and that every element has a countable system of neighbourhoods.
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x; — x;, and by Lemma 1, f(af',..., ) —>f(21,...,%,) a8 m — oo.
Since AN\7" is closed, f(®,, ..., ®,) e AN\Y", a contradiction. This completes
the proof.

Note that condition (9) of Lemma 1 can be weakened by stipulating
the same condition only for isotone or for antitone sequences. Then the
operations f will not prove to be continuous in general, but the analogue
of Lemma 1 will still hold.

Having turned our partially ordered algebra (4; F', <) into a topo-
logical algebra, we can try to define a uniform structure on it. This is
not always possible, but we may restrict ourselves to the case when
there is a binary operation g on 4 which can be used to introduce uni-
formity (like subtraction is used in abelian groups). Then we are con-
fronted with the hard problem of finding conditions under which the
completion becomes a partially ordered algebra of the same type satisfying
the same postulates as (4; F, <) (P 520). Here we do not intend to
enter the discussion of this problem.
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