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The notion of homomorphisms between two algebras or quasi-
algebras is usually defined in the case they are similar. In this paper
we introduce a more general notion of a P-homomorphism which does
not require the mentioned similarity but still has many properties of
an ordinary homomorphism. In particular, we obtain the existence theo-
rems on free B-P-homomorphisms, free B-P-bilinears, B-P-direct sums
and B-P-tensor products of quasi-algebras, where B is an arbitrary
quasi-primitive class of quasi-algebras. We also consider the notion of
independence with respect to P-homomorphisms, i. e. a P-independence,
- and we obtain some results similar to that of Marczewski [6] and
Schmidt [6]. The results of § 3, section E, are generalizations of my
paper [10]. The paragraphs 1 and 2 may be considered as an introduction
to the theory of quasi-algebras. The notion of a P-homomorphism is
related to that of a P-mapping due to Fujiwara [3].

§ 1. Partial operations. Let A be an arbitrary set and let &k be an
ordinal number. A k-ary partial operation (or a partial operation of the
type k) in the set A is any mapping f: D< A* > A, where the domain D
is a set of some sequences (a;, £ < k) in A of the type k. The value of
partial operation f for a sequence (ag, & < k) — if it exists — will be denoted
by f(ae, &< k) or briefly by f(a:). A k-ary partial operation f in the set A4
defined over the whole set 4* of all sequences (ag, E<< k) with aseA for E<k
is called a k-ary operation in the set A. The partial operations of the same
type are called similar. A subset B = A is called closed with respect to
a k-ary partial operation f in the set A provided that for all sequences
(bey &< k)eB", if f is defined for (b, & < k), then the value f(b;, & < k)
belongs to B.

A. Ordinary homomorphisms of similar partial operations. A mapping
h of a set A into (onto) a set B is said to be a homomorphism of a k-ary

* Presented to the Conference on General Algebra, held in Warsaw, September
7-11 1964.
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partial operation f in the set A into (onlo) a k-ary partial operation f' in
the set B provided that for all sequences (a;, &£ < k) belonging to A*, if f
is defined for (as, £ < k), then f' is defined for (h(a;), &< k) and,
moreover, that

(1) h(f(ag, & < k) = [ ((ag), & < k).

A homomorphism h of a partial operation f in a set A into a partial
operation f’ in a set B is called strong provided that for all sequences
(ag, £ < k)eA", if f’ is defined for (h(a), &< k), then there exist elements
azeA, £E<k such that h(a;) = h(a;) for £<k and f is defined for
(ag, £ < k).

The homomorphisms between operations are always strong. The
one-to-one homomorphisms are isomorphisms. An isomorphism of par-
tial operation f onto a partial operation f’ is strong if and only if 47!
is an isomorphism of f’ onto f.

B. Direct products of partial operations. Let 7 be any set and let f;
be a k-ary partial operation in a set A, for te7. Let us denote by

A = P A, the cartesian product of all sets A;, teT, i. e. the set of all
teT

mappings ¢ : T — () 4, with ¢(t)e A, for teT. The direct product of partial
teT

operations fi, teT, is a k-ary partial operation f in the set 4 such that,
for all sequences (¢, & < k)e A", f is defined for (e, E< k) 1f and only
if f; is defined for (gq(t), £ << k) for all {e7T and, moreover, that we have

(2) flpe, E< k) =¢, where (1) = fip:(t), £<k) for all te7.

Hence we obtain for all te7':
(3) Pt(f(ip, &< k)) :ft(pt(%g), E< k) for all teT,

where p; is the natural projection of A onto Ay, i. e. pi(¢) = ¢(t) for all
peA. By (3) the projection p, is a homomorphism of f onto f,. The direct
product of operations is an operation.

C. Direct sums of partial operations. Let 7' be any set and let f; be

a k-ary partial operation in a set A; for teT. Let 4 =S A; be the
tel

direct sum of sets Ay, teT, i.e. A = {(t,a):1eT,aeAs} is the set of all
pairs (f,a) with te7 and aed,. The direct sum of partial operations
fi,teT, is a k-ary partial operation f in the set A such that for all
sequences (f, a;), £ <<k, f is defined for this sequence if and only if
there exists an element t,eT such that ¢, = ¢, for all £ <k and fy, 18
defined for (a,, § < k), and, moreover, that

f((tg, @), §< k) = (to’ fto(“fi E< k))
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The mapping i;: A — A with 4(a) = (t, @), which is said to be
the natural injection of A; into A, has the following property: '

(4) i(filae, < K)) = flir(ag), & < K.

By (4) the injection 4; is an isomorphism of f; into f; 4; is a strong
isomorphism of f; onto f|i;(A4;), where f|#(4,) is the restriction of f to
the closed subset 7;(Ay).

The direct sum of operation is not an operation but it is a partial
operation.

D. Quasi-tensor products of partial operations. Let f* and f” be any
k-ary partial operations in a set 4 and in a set B, respectively. The quasi-
tensor product of partial operations f' and f'’ is a k-ary partial operation
f in the cartesian product AX B of sets 4 and B such that for all
sequences ({ag b, &< k)edX BY, f is defined for this sequence if and
only if either 1) there exists an element aeA such that a; = a for all
&< k and f is defined for (b., &£ < k) or 2) there exists an element beB
such that b, = b for all £ < k and f’ is defined for (a;, £ < k); in the first
case we put f(<ag, by, E< k) = <a,f’(bs, §< k)), In the second case
we pubt f(<ag, b, E< k) = {f'(a;, E< k), b>. Moreover, by defini-
tion, f is not defined for any constant sequence ({ag,b;>, & << k) with
{ag, be> = <a, by not for all &<k (since in the opposite case, by 1),
f a, by, <a, by, ...) = {a,f"(b, b,...)> and, by 2), f(La, by, <a, b3, ...)
= {f'(a,a,...), by but these values may be different).

§ 2. Quasi-algebras. Let @ = {g, ...} be an arbitrary set of operator
symbols. We denote by m(g) the rank of the operator symbol g,1i. e. the
ordinal number » for which g is n-ary. The rank of G is the least initial
number ¢ such that n(g) < p for all geG. The dimension of G is the least
initial number y such that, for all ge@, y is not cofinal with any ordinal
number a < n(g), and y > n(g).

By a quasi-algebra of the type G we understand any sequence

A =<4,(94,9¢G)>,

where A is a set and g, is a n(g)-ary partial operation in the set A for
all geG (1). If moreover for ge@, g, is an operation in the set 4, then
the sequence A is said to be an algebra of the type G. The rank and the
dimension of a quasi-algebra A of the type G is the rank and the dimension
of G. Let T be any set and let A; = (Ay, (94, 9¢G)) be a quasi-algebra
of the type @ for teT. Moreover let 4 = P A, be the cartesian product

teT

of sets Ay teT, and let A" =S 4, be the direct sum of sets Ay, teT'.
teT

(!) In the sequel the quasi-algebras will be denoted by A, B, C, ... and their
sets by 4, B,C, ...
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The quasi-algebras A = <4, (g4, 9¢@)> and A’ = <A, (g4, geG)> of
the type &, where g, and g, are for all ge@ the direct product and
direct sum of partial operations g,,teT, are called the direct product
and direct sum of quasi-algebras A, teT', respectively (see § 1, sections
B and C). The direct product and direct sum of quasi-algebras A, teT,

will be denoted by P A, and S A,, respectively. The quasi-algebra
teT teT

C = (0, (gg, ge@)> of the type G is said to be the quasi-tensor product
of quasi-algebras A = {4, (94,9¢G)> and B = (B, (gg, g¢@)> of the
type G it ¢ = AX B is the cartesian product of sets 4 and B and g, is
the quasi-tensor product of partial operations g, and gp for all ge@
(see § 1, sec. D).

A. Subquasi-algebras and sets of generators. Let A = (A, (g4, geG))
be a quasi-algebra of the type G and let B be an arbitrary subset of A
closed with respect to all partial operations g4, ge@. Then the set B
and the sequence B = (B, (g;,9¢G)>, where gp = g,4|B is the
restriction of g, to the set B for all ge@, are called a subquasi-algebra
of A. Any intersection of subquasi-algebras of A is also a subquasi-
algebra of A. Hence it follows that for an arbitrary subset M of A there
exists the least subquasi-algebra M of A which contains the set M. It
is called generated by M.If M = A, then M is said to be a set of generators
for A. Now we determine the form of the subquasi-algebra i of a quasi-
algebra A of the type G. Let y be the dimension of @. We define by in-
duction the sequence M = M,, M,,..., M (0 < y) such that

Gy v

(5) M, = PMEU %JG!JA(U M,),

<o

where for X c A4, ¢,(X) denotes the set of all elements of 4 which
are the values of partial operation g, for elements belonging to X. In
an analogical way as in the proof of my theorem (2.3) in [9] we obtain
the following theorem:

(21) M =Y M,.

o<y
Theorem (2.1) determines the form of the subquasi-algebra of A
generated by a set M. The sets M, ¢ < y, are called the Borel-classes
of the set M in the quasi-algebra A. .
The cardinal number of a set X will be denoted by |X| and that

of an ordinal number ¢ by g¢. We obtain from (2.1) in a similar way to
that of my paper [9] (theorem (4.1)) that

(2.2) | M| < (|M|-|G|-0)%, where o is the rank of G.
From (2.2) results
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(2.3) For every cardinal number m there exists a number m (m= - |@|-p)e)
such that for all quasi-algebras A of the type G (of rank o) and all subsets M
of A with |M| <m we have |M| <m.

B. Ordinary homomorphisms of quasi-algebras. Let A = {A4,(¢ 4,9 <G)>
and B = (B, (g, 9¢G)> be any two quasi-algebras of the type G.
A mapping b of A into B is said to be a (strong) homomorphism of A
into B if h is a (strong) homomorphism of the partial operation g, inio
the partial operation gy (see § 1 section A4) for all ge@.

The homomorphisms between algebras are always strong. One-to-
one homomorphisms are isomorphisms. If & is a homomorphism of a
quasi-algebra A of the type G into a quasi-algebra B of the type G, then
h considered as a subset of the cartesian product A X B of sets 4 and B
is a subquasi-algebra of the direct product AxB of A and B such that

(6) for all aeA there exists only one element beB with {a, b)eh.

The converse is not always true. Any subquasi-algebra & of the direct
product AxB of quasi algebras 4 and B which has the property (6)
is called a full-homomorphism of A into B. Every homomorphism of A
into B is a full-homomorphism of A into B, but the full-homomorphism
of A into B is not always a homomorphism of 4 into B.

It is easy to verify that

(2.4) For algebras the notions of homomorphisms, strong homomorphisms,
and full-homomorphisms are identical.

The quasi-algebras h of the direct product AxB of quasi-algebras
A and B of the type G such that

(T)  for all aeA there exists at most one element beB with <{a, b eh

are called partial-homomorphisms of A into B. The partial-homomor-
phisms of A into B are those subquasi-algebras of AxB which are
the partial mappings of A into B.

Let us observe that

(2.5) If A and B are any algebras of the type G and h is a partial-homo-
morphism of A into B such that the set p,(h), where p, is the natural pro-
jection of Ax B onto A, contains a set of generators for A, then h is a full-
homomorphism (and therefore, by (2.4), a homomorphism) of A into B.

Indeed, p,(h) is a subalgebra of A containing a set of generators
for A and hence p,(h) = A. Thus (2.5) is proved.

C. Peano-algebra. Let X be a set. An algebra W = (W, (¢, g G)>
of the type @ is called a Peano-algebra of the type G generated by X if it
has the following properties:
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(2.a) the elements of X are not values of the operations gw, ge@, for
elements of W, ‘ :

(2.b) for all g,9'«G@ and all sequences (wg, &< n(g)eW"? and
(e, E<n(g)e W, if gy (we, &< n(g)) = gwlwg, < n(g), then
g =g and w, = w, for &E<n(g) = n(g’),

(2.c) the set X generates the algebra W.

Now we prove that

(2.6) For every set X there exists the Peano-algebra W of the type G
generated by the set X.

Proof. For geG@ and any set B we denote by ¢g[B] the set of all
pairs <g, (b, < n(g))>, where (b;, £ < n(g)) is a sequence of the type n(g)
the elements of which belong to B. Let y be the dimension of ¢. We define
by induction a sequence of sets X = X,, X;,..., X y..., 0 <<y, such
that

X, =UX, v UglU X,].

E<ao ge@ E<o

Let W= [JX,. Putting

o<y

gw(we, &< n(g) = <g, (we, £ < n(g))>

for all ge G and all sequences (wg, £<n(g)) with w,e W, we obtain an
n(g)-ary operation in the set W. It is easy to verify that the sequence
W = (W, (9w, 9¢G), is a Peano-algebra of the type G generated by X.

(2.7) Let W = (W, (9w, geG)> be a Peano-algebra of the type @
generated by a set X and let A = (A, (ga, 9e@)> be an arbitrary quasi-
algebra of the type G. Moreover, let ¢ : X — A be any mapping of X into A.
Then the subquasi-algebra ¢ of WX A generated by ¢ is a partial-homo-
morphism of W into A.

Proof. At first let us observe that

(i) no pair (@, a), where xeX and a + ¢(x), is in the set ¢.

Indeed, the set U = ¢— {<x, ad}, where a # ¢(x), is a subquasi-
algebra of direct product Wx A4 of W and A containing ¢, because

1° ¢ =« U by virtue of (x, a)dop,

2° if the pairs <w, a;>, § < n(g), belong to U, then the pair
Iw(we); ga(@e) > = gurx a({We, a;)) — provided it exists — is by (2.a)
different from (z, a), and therefore U is closed with respect to partial-
operations gy, 4 for all ge@.

Hence it follows that U = ¢ and thus we obtain (i). Now we prove
that for all we W

(ii) there exists at most one element aeAd with (w, a)egp.
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For let us denote by W’ the set of all elements we W which have
the property (ii). By (i), X « W’'. Let w.e W' for £ < n(g). Then there
exists at most one element a.eA with {w,, a;>ep for £<n(g). Let us
observe that

(ili) No pair {gw(we, &< n(g)), a) with a # g4(as, E<n(g)) is in
the set ¢.

Indeed, the set U = ¢— {{gwl(w:, &£ < n(g)), ad}, where a # g4
(> £ < n(g)), is a subquasi-algebra of Wx A containing the set ¢, because

1" ¢ = U by (2.a),

2 if (wg, a;>eU for &< n(g’), then, by (2.b), the pair (if it exists)

Gwxal{we, aeyy E< n(g)) = Lgw(we, &< n(9"))s galag, &< n(g")>

is different from <{gyu (wé, E< n(g)),a), and hence U 1is closed with
respect to the partial operation g, for all g’e«G. Thus U = ¢,
and therefore we obtain (iii). From (iii) it follows that for the
element w = gw(w;;, E< n(g)) there exists at most one element aeA
with (w, a)ep (a = g4, E<n(g))) if the element a exists. Hence
the element w = gy (w:, £ < n(g)) belongs to W' if o,e W' for all
geG and thus W’ is a subalgebra of W containing the set X
of generators for W; hence W’ = W, and thus lemma (ii) is true
for all we W. Therefore ¢ is a partial-homomorphism of W into A and
theorem (2.7) is proved.

(2.8) The Peano-algebra W of the type G generated by a set X is the
absolutely free algebra of the type G freely generated by X, i.e. for every
algebra A of the type G and each mapping ¢ : X — A, the mapping ¢ can
be extended to the unique homomorphism ¢ of W into A, where W is a
Peano-algebra of the type G generated by X.

Proof. By (2.7) and (2.5) the subalgebra ¢ of Wx A generated
by ¢ is a full-homomorphism of W into A, and thus, by (2.4), it is a
homomorphism of W into A which is the unique extension of ¢. Theorem
(2.8) is proved.

; In this way we have obtained a correct proof of theorem (1.3) of
my paper [9, Chap. III](?).

From (2.8) it follows that a Peano-algebra of the type G generated
by a set X is uniquely determined up to an isomorphism by the cardinal
number of set X. Let B be an arbitrary class of quasi-algebras of the
type G. An algebra B is said to be a B-partial-free algebra freely
generated by a set X if it has the following properties:

(?) From the Henkin’s considerations in [4] it follows that the proof of theorem
(1.3) in my paper [9] (chap. 111 is false. This fact has been observed also by Schmidt [7].
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1" B3,
2" X is a set of generators for B,

3" for each quasi-algebra A¢B and for each mapping ¢: X — 4,
the subquasi-algebra ¢ of Bx A generated by ¢ is a partial-homomorphism
of B into A (if A is an algebra, then by (2,5) the condition “gp is a partial-
homomorphism of B into A” is equivalent to the condition “p is a homo-
morphism of B into A”).

The B-partial-free algebra freely generated by a set X is uniquely
determined (if it exists) up to isomorphisms by the cardinal number of
the set X. By (2.7) the Peano-algebra of the type G generated by a set X
is the B*-partial-free algebra freely generated by X, where B* is the
class of all quasi-algebras of the type G. If B is a class of algebras, then
the B-partial-free algebra freely generated by a set X is identical with
the B-free algebra freely gemerated by X (see remark in the parenthesis
of condition 3’"). Let us observe that

(2.9) If B is an equationally definable class of quasi-algebras of the
type G, then for any set X there exists the B-partial-free algebra freely ge-
nerated by the set X and it is identical with the B’-free algebra freely generated
by X, where B’ < B is the class of all algebras defined by the same equations
as the class B.

For a definition of equationally definable class of quasi-algebras
see next section D.

D. The partial operations defined in quasi-algebras by terms.
Let W = (W, (9w, g¢ G)> be a fixed Peano-algebra of the type @ gener-
ated by a set X = (xy,®,,...,2,,...,06< p), where all x, are pairwise
different elements. The elements of W are called G-terms, and the elements
of X are considered as variables. For every G-term te W there exists the
least subset X' < X with 7eX’, which is called the support of 7. The
support of = will be denoted by X,. Let X, = (@gyy Tp s oeny Lpey oey £ < ),
where f,< f, < f,<<... is the support of G-term 7. Then the ordinal
number a = n(r) is said to be the rang of v and the term = will be also
denoted by r(mﬂg, £ < n(7)). Let A be an arbitrary quasi-algebra of the
type G and let v = r(mﬁs, £ < n(7)) be any G-term in W. Let k be an
arbitrary ordinal number such that k > n(zr). The term t defines in the
set A of quasi-algebra A a k-ary partial operation 7,. We define 7, as
follows. Let (a., &£ < k) be any sequence of the type k in A. Let us denote
by ¢ any mapping of X into A such that ¢ (wg,) = a; for all &< n(z).
By theorem (2.7)" the subquasi-algebra ¢ of the direct product Wx A
of W and A generated by ¢ is a partial-homomorphism of W into A.
The partial operation 4 is defined for (a., £ < k) if and only if the term =
belongs to the domain of ¢, i. e. to the set p,(¢), where p, is the natural
projection of Wx 4 onto W, and, moreover, we put t4(a;, & < k) = ¢(z).
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The partial-operation 7, depends only on the first n(r) arguments. If A
is an algebra, then 7, is also an operation. The partial operation 7, is
said to be defined in the quasi-algebra A by the G-term 7 (3). It is easy to
verify that

(2.10) If h is a homomorphism of a quasi-algebra A of the type G inio
a quasi-algebra B of the type G, then, for every G-term T, h is a homo-
morphism of 14 into vy, where t4 and Ty are the partial operations defined
by G-term v wn the quasi-algebras A and B, respectively.

Now we give a definition:

(2.11) For any term t = t(xs,, &£ < n(r)) we denote by 7' the term
obtained from v by substituting x,, by o, for E< n(z), . e. T = h(z), where
h is a homomorphism of W into W such that h(ws) = x; for & < n(7).

We observe that

(2.12) For any term v and any quasi-algebra A the partial operations
14 and T, are identical.

(2.13) The subquasi-algebra M of a quasi-algebra A of the type G gene-
rated by a subset M has the form

M= Ura(M) = Ura(M),

W TeW

where T 4(M) and vy (M) are the sets of all elements of A which are the values
of partial operations 7,4 and 1, (we assume for (2.13) that |X| > o, where
is the rank of G).

The term 7 defines in quasi-algebra A other partial operation ,r
as follows: ,7 is defined for a mapping ¢ : X — A if and only if the
term 7 belongs to the domain of ¢ and ,7(¢) = ¢ (7).

47 is called the partial operation of the type X defined by term z in
quasi-algebra A. From the definition results

(2.14) If 7 =r1(p, E<n(r)) and & =9(xs, & <n(d)), where
n(t) < n(9), then the identity v 4= 04 18 equivalent to the identity 4t = ,9.

From (2.14), (2.11) and (2.12) we obtain

(2.15) For any terms v and ¢ and any quasi-algebra A the identity
AT = 40" is equivalent to the identity v,y = ¥, (vesp. 14 = ¥,).

The pairs {z, &), where 7, ¢« W are G-terms, will be called G-equations.
A G-equation (7,?d)> will be also denoted by "z = & 1. A G-equation
Mz = ¢} is called valid in a quasi-algebra A of the type G if 47 = 4
(i. e. (1) = @(#) for all peD, where D is the domain of 47 and 9.
Hence the equation "7 = ¢! is validin A4 if and only if the partial opera-

(®) The partial operations 74 defined in a quasi-algebra A by terms 7 are called
also algebraic partial operations in A.
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tions 47 and ,® are identical. By (2.15) the equation "7’ = ¢ 1 is valid
in A if and only if the partial operations 7/, and ¢, (resp. 7, and )
are identical.

The set of all G-equations which are valid in A will be denoted by
E(A). If E, is a set of G-equations, then G(F,) denotes the class of all
quasi-algebras A of the type G such that K, < E(A). The classes of the
form G(Z,) are called equationally definable.

§ 3. P-homomorphisms. Let F = {f, ...} and G = {g, ...} be two sets
of operator symbols. Let 4 = (A4, (f4,feF)) and B = (B, (gp, g¢G))
be two quasi-algebras, the first of type F and the second of type G.
In order to define the notion of a homomorphism for this general case,
let us consider two Peano-algebras F* = Free(F, X) and G* = Free
(G, X), the first of type F and the second of type G, both generated
by the same set X = (zg, @1y ..., Tyy ..., 0<< p). The elements of F*
and of G* will be considered as F-terms and G-terms, respectively.

A mapping P: F — 2%, where G* is the set of all G-terms, is said
to be a Ppg-mapping if for all feF and all veG* the relation 7eP(f)
implies n(7) < n(f), where n(z) and n(f) are the ranks of the G-term z
and the operator symbol f, respectively. A Ppg-mapping P is called
proper if P(f)is a one-element set for all feF. Let P be an arbitrary Pg g-
mapping. A mapping h of A into B is called a P-homomorphism of a quasi-
algebra A = (A, (fq4,feF)> of the type F into a quasi-algebra B =
= (B, (gp, geG)> of the type G if, for all feF, all the sequences
(@, E< n(f)ed™, and all 7eP(f), if f, is defined for (a,, &< n(f)),
then 75 is defined for (h(a:), E<n(f)) and h(fq(as, £<n(f))
= TB(h(a’&)7 §< ”(f))

If ¥ < G and P is a proper Ppg-mapping such that P(f) = f for all
feF, then P-homomorphisms are ordinary homomorphisms.

It is easy to verify that

(3.1) A mapping h of a quasi-algebra A of the type F into a quasi-
algebra B of the type G is a P-homomorphism of A into B, where P is a
proper Ppg-mapping, if and only if h is an ordinary homomorphism of A
into a quasi-algebra P(B) = (B, P(f)g, feF) of the type F, called P-quasi-
algebra over B, where P (f)g is the n(f)-ary partial operation in B defined
by the F-term P(f).

(3.2) If h is a P-homomorphism, where P is an arbitrary Pp g-mapping,
of a quasi-algebra A of the type F into a quasi-algebra B of the type G, and q
is @ homomorphism of B into a quasi-algebra C of the type G, then the
mapping qh is a P-homomorphism of A into C.

- (3.3) If q is a homomorphism of a quasi-algebra A of the type F into
a quasi-algebra B of the type F, and h is a P-homomorphism, where P is
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any Prg-mapping, of B into a quasi-algebra C of the type G, then hq is
a P-homomorphism of A into C.

A. The direct product of P-homomorphisms. Let P be an arbitrary
Ppe-mapping and let 4 = (A4, (f,,f<F)> be any quasi-algebra of the
type F. Let T be any set and let h;, teT, be a P-homomorphism of A4
into a quasi-algebra By = (B, (¢p,, g<G)) of the type G. Let us consider

the quasi-algebra B = PB, = (B, gz, ge¢G> of the type G, which is
teT

the direct product of all quasi-algebras B;,teI'. The mapping

h:A — B, where B = P B, is the cartesian product of sets B;, such
teT

that for all ae A, h(a) =¢ with ¢(t) = hi(a) for all teT, is called the direct
product of mappings hy, tel. Let p; be the natural projection of B =tP By
T
onto B;. It is easy to verify that
(3.4) The direct product h of P-homomorphisms hy, teT, is the unique
P-homomorphism of A inlo the direct product B of quasi-algebras By, teT,
such that hy = ph for all teT.

(3.5) The direct product h of P-homomorphisms hy, teT, is ome-to-one
if and only if the homomorphisms hy, tel', separate the quasi-algebra A,
i. e. if and only if for any pair of different elements a,beA there exists
a toeT with hy(a) # hy(b). Thus h is one-to-one if and only if

() By < id 4,
teT
where R; is the equivalence relation in A induced by h,((a,, b>eR'
< y(a) = h,;(b)) and id 4 s the identity relation in A (id4 = {{a, a) : acA}).
Theorems (3.4) and (3.5) may be considered as some generalizations
of the product theorems of Birkhoff [2].

B. The direct sum of P-homomorphisms. Let P be any Py g-mapping.
Let T be an arbitrary set and let A;,teT, be a family of quasi-algebras
of the type I' and let ‘B be any quasi-algebra of the type G. Let us
consider an arbitrary family of P-homomorphisms #; of 4, into B for
teT. Let A be the direct sum of quasi-algebras A;,teT. A mapping h:

A — B, where A = S A, is the direct sum of sets A; of all elements of
teT

quasi-algebras A, and B is the set of all elements of quasi-algebra B
such that h((t, a)) = hy(a) for all teT and all aed, is called the direct
sum of mappings hy,teT. The direct sum of P-homomorphism is also
a P-homomorphism, Indeed, we have the following theorem:

(3.6) The direct sum h of P-homomorphisms hy,teT, of A, into B,
i8 the unique P-homomorphism of the direct sum A of quasi-algebras Ay, teT,

wito B such that hy = hiy for all teT', where i, is the natural injection of A
into A (i,(a) = (t, a)).

Colloquium Mathematicum XIV 10
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C. B-P-homomorphisms. Let P be any P o-mapping and let B be an
arbitrary class of quasi-algebras of the type G. Moreover, let 4 be an
arbitrary quasi-algebra of the type F. Any pair (h,B), where B3
and h is a P-homomorphism of A4 into B, is called a B-P-homomorphism
of A. The one-to-one B-P-homomorphisms of A are called B-P-extensions
of A. A B-P-homomorphism (k, B) of A is said to be almost onto if the
set h(A) generates B. Now we introduce some relations between B-P-
homomorphisms of A. Let (h, B) and (2, B') be B-P-homomorphisms
of A. We shall say that:

1. (h, B) < (b, B') if there exists exactly one ordinary homomorphism q
of B into B' with h' = qh, '

2. (hy B) = (b', B') if and only if there exists exactly one strong iso-
morphism q of B onto B’ with h' = qh.

A B-P-homomorphism (%, B) of A is said to be free if for every B-P-
homomorphism (', B’) of A we have (h, B) < (k', B’). Now we prove
that _

(3.7) The free B-P-homomorphism of A (if it ewists) is wuniquely
determined up to relation =.

Proof. Let (h,B) and (h',B’) be two free B-P-homomorphisms
of A. Then »" = qh and h = ¢'h’, where ¢ and ¢’ are the homomorphisms
of B into B’ and of B’ into B, respectively. Hence we obtain b’ = q-¢’ -}/
and h = ¢'-g-h. But we have also ' = I'h’ and h = Ih, where I' and I
are the identity isomorphism of B’ onto B’ and of B onto B respectively,
and thus ¢-¢" = I' and ¢'-¢ = I. Hence it follows that ¢ and ¢’ are one-
to-one and “onto”, and moreover ¢’ = ¢~ '. Therefore ¢ is a strong iso-
morphism of B onto B’, whence (h, B) = (k’, B') and thus (3.7) is proved.

A class B of quasi-algebras of the type @ is called quasi-primitive
if it has the following properties:

1*) B is closed with respect to direct products,

2*) B is closed with respect to subquasi-algebras,

3*) B is closed with respect to strong isomorphic images.

Now we prove a general existence theorem of quasi-algebras.

(3.8) Let B be an arbilrary quasi-primitive class of quasi-algebras
of the type G and let A be an arbitrary quasi-algebra of the type F. Moreover,
let P be any Ppg-mapping. Then there exists the free B-P-homomorphism
of quasi-algebra A.

Proof. By virtue of theorem (2.3) there exists a number m such
that |B| < m for all quasi-algebras B of the type @ generated by sets
M with |M| < |A|. Let E be an arbitrary set with |E| > m and let B
be an arbitrary quasi-algebra of the type @ with B < E. Let us consider
the family of quasi-algebras B; = B, where i runs through all P-homo-
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morphisms of 4 into B, i. e. through the set P-Hom (A4, B). Let h, be
the direct produet of all P-homomorphisms of A4 into B. By theorem
(3.4) hp is the unique P-homomorphism of A into BFHomAB) g6}
that p,hp = 2 for all AeP-Hom (A4, B), where p, is the natural projection
of BPHomAB) onto B, — B. Let & be the direct product of all P-homo-
morphisms h, with BeB and B < E. By theorem (3.4) & is the unique
P-homomorphism of A into the direct product PRF-HmAB) of 41|
direct powers BUHmAB) - where BeB and B < E, such that hy
= gph for all BeB with B < E, where ¢ is the natural projection of
pRUHomAB) onto BPHOMAB) Tet € be the subquasi-algebra of
PBUHMAB) generated by the set h(A),i.e. € = h(4). By 1* and 2*
of the definition of quasi-primitive class the quasi-algebra C belongs
to B. The pair (k, C) is the free B-P-homomorphism of A. Indeed, let
(h,, B,) be an arbitrary B-P-homomorphism of A. Let us denote by

D = h,(A) the subquasi-algebra of B, generated by h,(A4). Since |h,(A4)]
< |A|, obviously DeB and |D| < m, Hence it follows that there exists
a quasi-algebra B with B < F such that B is strongly isomorphic to D.
Let 7 be a strong isomorphism of D onto B. By 2* and 3* of the definition
of a quasi-primitive class, Be¢B3. Then h, = ¢-h, where ¢ = ip,q5|C
with 1 = i7'h,, and therefore (h, C) < (h,, B,) (the homomorphism ¢
is unique since h(4) generates C). Thus we have proved that the pair
(h, C) is the free B-P-homomorphism of A, i.e. the theorem (3.8) is
proved.

If ' < G and P is a proper Ppg-mapping such that P(f) = f for all
feF', then from (3.8) we obtain the existence theorem contained in pa-
per [7] of Schmidt. Let us assume that B is a quasi-primitive class. Then
we observe that

(3.9) The quasi-algebra A has an B-P-extension if and only if the
Jree B-P-homomorphism of A is a B-P-extension of A.

From the construction of the free B-P-homomorphism (kh, C) of
the quasi-algebra A, which is given in the proof of theorem (3.8), it follows
that the equivalence relation R, in 4 induced by & is the least among all
equivalence relations R induced by P-homomorphisms ieP-Hom (A4, B),
where BeB. Hence we obtain

(8) Ry, =N N R,
BeB A<P-Hom(A4,B)
Defining
RB = ﬂ Ru
1eP-Hom(A,B)
we have

Ry = N By = Ry.

BB
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The elements of Ry are called A-P-equations of quasi-algebra B.
Obviously Ry = Ry = R, where the pair (h, C) is the free B-P-homo-
morphism of A. Extending the notion introduced by Tarski [12] for
algebras, the quasi-algebra C is A-P-functionally or A-P-equationally
free in the class B. By (8), we obtain

(3.10) The free B-P-homomorphism (h, C) of A is a B-P-extension
of A if and only if Ry < idy, 4. e. if and only if

Axd—id)e ) U (AxA—Ry),
BeB i<P-Hom(A4,B)

ory in other words, if and only if for any different elements a,beA there
exists a B-P-homomorphism (h, B) of A such that h(a) # h(b).

D.Free quasi- algebras in quasi- primitive classes. Let B be an arbitrary
class of quasi-algebras of the type F and let ¥ be any set. A quasi-algebra
B is said to be B-free freely generated by Y if it has the following properties:
1. BB, 2. the set Y is a set of generators for B and 3. for every quasi-
algebra B, B and for every mapping ¢: Y — B, there exists exactly
one homomorphism of B into B, being an extension of ¢. The B-free
quasi-algebra freely generated by Y, if it exists, is uniquely determined
up to isomorphisms by the cardinal number of the set Y. Now we prove
the existence theorem

(3.11) Let B be an arbitrary non-trivial quasi-primitive class of quasi-
algebras of the type F and let Y be an arbitrary set. Then there exists the
B-free quasi-algebra freely generated by Y.

Proof. Let us consider proper Pppmapping P such that P(f) = f
for fe . Then the B-P-homomorphisms of a quasi-algebra A4 of the type F
are called briefly B-homomorphisms of A, since in this case the P-homo-
morphisms are ordinary homomorphisms. Let us assume that A is the
diserete quasi-algebra of the type F, i. e. an abstract set (in discrete quasi-
algebra A the partial operations f, are empty for all feF) such that
|A] = |Y|. Let (h, C) be the free B-homomorphism of A. It exists by
theorem (3.8). Then the quasi-algebra C is B-free freely generated
by the set h(A) which may be considered as the set Y. Indeed,
since A is discrete, then every mapping of A into any quasi-
algebra B is a homomorphism of A4 into B. But the class B being
non-trivial, it contains a quasi-algebra B with |B| > 2, and thus & is one-
to-one by (3.10). Let B be an arbitrary quasi-algebra belonging to B and
let ¢ be any mapping of the set h(4) = Y into B. The pair (¢h, B) is
a B-homomorphism of A and therefore there exists a homomorphism ¢
of C into B such that ¢h = ¢h and is an extension of ¢; thus the set h(4)
= Y is B-free. The set h(A) = Y generates the quasi-algebra C, since

the pair (h, h(4)) is a B-homomorphism of A such that (h, k(4)) < (h, C)
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with b = 4-h, where h(A) is the subquasi-algebra of € generated by
h(4) and i is the identity mapping of h(4) into €, and thus (h, iﬁA&))
= (h, C), because (h, C) is the free B-homomorphism of 4. Hence
= h(A) and theorem (3.11) is proved.

Let us remark that the free B-P-homomorphism (h, C) of an arbit-

rary quasi-algebra A of the type F is always almost onto, i. e. ¢ = h(A)
for every quasi-primitive class B of quasi-algebras of the type G and
for any Py g-mapping P. The proof of this fact is the same as the proof
of theorem (3.11).

E. P-homomorphisms of quasi-algebras into algebras. Let B be an
arbitrary primitive class of algebras of the type @, that is let B be a quasi-
primitive class of algebras of the type @ closed with respect to homo-
morphic images. Let 4 = (A4, (f,,feF)>. be any quasi-algebra of the
type F and let P be an arbitrary Pyg-mapping. The purpose of this
section is to determine the form of all almost onto B-P-homo-
morphism of A. For a solution of this problem, let us denote by
W = (W, (9w, g<@G)> the B-free algebra freely generated by A. Since B
i3 a primitive class, the algebra W = Free(B, 4) exists by (3.11). The
B-P-homomorphisms of 4 are determined by the B-P-regularizers of A
which are certain congruences of the algebra W (an equivalence relation
~ in W is said to be a congruence of W if it preserves all operations Iw
for ge@, i. e. if it has the following property: for all geG and for any
elements a,, b, in W, where &< n(g), the conditions a, ~ be for & < n(g)
imply the condition gy (ag, & < n(g)) ~ gw (b:, & < n(g)).

The following is the precise definition of B-P-regularizers of A.

Definition (3.a). Let ~, be the least congruence ~ of the algebra
W such that, for all feF', all sequences (a;, & < n(f))eA™, and all ze P(f)
we have

fA(ae’ §< n(f))"" TW(“&) &< %(f)),

provided f, is defined for (a., £ < n(f)). The congruences ~ of the algeb-
ra W with ~, c ~ are called the B-P-regularizers of A. The relation
~q i8 the minimal B-P-regularizer of A. B-P-regularizer ~ of A4 is said
to be proper if the relation a ~b implies a = b for all a, beA.

For every congruence ~ of the algebra W by W/~ = ¢ W/~,
(9wi~y g<G)> will be denoted the quotient algebra formed by dividing the
algebra W by the congruence ~, i. e. an algebra of the type G such that
W[~ is the set of all abstraction classes w/~ of ~, where we W and w [~
is the set of all elements » in W such that » ~ w, and Jw~ 18 defined by
the formula

Iwi~ (w£/~7 §< n(g)) == gw(’we’ §< %(g))/"“-
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The mapping g_: W — W/~ with ¢_(w) = w/~ is the natural homo-
morphism of algebra W onto quotient algebra W |~ induced by the con-
gruence ~. By j_ will be denoted the restriction of ¢g_ to the set A4, Le.
j..is a mapping of A into W/~ such that j_(a) = a/~ for all acA. Using
the definition (3.a) it is easy to verify analogically to my paper [10] the
following theorem

(3.12) For every B-P-regularizer ~ of the quasi-algebra A the pair
(jo, W[~) is an almost onio B-P-homomorphism of A. This pair is a B-P-
extension of A if and only if the B-P-regularizer ~ of A is proper.

Proof. Using Definition (3.2) we have

j~(fA(“§7 &< ﬂ(f)) —_—fA(“sa E< ’n(f))/"’ = TW(“n § ’n(f))/"’
= T (@~ &< ) = T~ (i~ (@), &< n(f)),

if feF and TeP(f) and if f, is defined for (ae, & < n(f))ed™”. Hence
the pair (j., W/~) is a B-P-homomorphism of A, since the class 8
is, as a primitive one, closed with respeet to homomorphic images and
whence W/~ eB. The set {j._(a) = a/~, acA} generates the algebra W/~,
since A generates the algebra W, and thus the pair (j_, W/~) is an al-
most onto B-P-homomorphism of A. The mapping j._ is one-to-one if
and only if the B-P-regularizer ~ of A is proper. Thus we have proved
(3.12).

Now let (b, B) be any B-P-homomorphism of the quasi-algebra A.
Since W is a B-free algebra freely generated by A, there exists exactly
one homomorphism % of W into B with 2| A = h. By ~; we shall denote
the congruence of W induced by % (i. e. w~v if and only if h(w)
= % (v)). Hence we obtain the following theorem:

(3.13) For every B-P-homomorphism (h,B) of quasi-algebra A the
congruence ~y, defined above is a B-P-regularizer of A and we have
(jny W]~y) < (h, B) with h = 9§, where 1y is the natural isomorphism
of W/~ into B with iy (v]~y) = I(v) for ve W. If h maps A almost onto B,
i.e. if h(A) generates B, then (j_n, W/|~;) = (h, B). The pair (h, B) i3
a B-P-extension of A if and only if the B-P-regularizcr ~y is proper.

Proof. Since h = k|A, and & is a P-homomorphism, and % is a
homomorphism, we have for feF and zeP(f):

h(falag, &< n(f)) = h{falae, &< n(f))) = Talh(as), & < n(N)
o TB(E(a’e); < n(f)) = E(TW(‘LE, &< 'n(f)))r

hence

fA(a£! ¢ < '”f(f)) NhTW(GEa £ 'n(f))a

provided f, is defined for (a;, £ < n(f)); and thus ~4 is B-P-regularizer
of A. Obviously, b = 4,4z and hence in view of h = k| A and j, = gl 4
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we obtain h = i3jp; S0 (jon, Wi~) < (h, B). If h maps A almost
onto B, then 7, maps onto B and (j_s, W /~h (h, B). Since i; is one-
to-one, h is one-to-one if and only if j_j, is one-to-one. Hence by theorem
(3.12), (h, B) is a B-P-extension of A if and only if the B-P-regularizer
~y, 18 proper. Thus theorem (3.13) is proved.

The relation ~, and the isomorphism %, defined above are called
the B-P-regularizer and the B-P-specialization of A induced by the B-P-
homomorphism (h, B) of A.

Theorems (3.12) and (3.13) easily imply

(3.14) The pairs (j., W/~), where ~ is an B-P-regularizer of A,
are all almost onto B-P-homomorphisms of A, up to the relation =.

Proof. The pairs (j_, W/~) are, by (3.12), almost onto B-P-homo-
morphisms of A. If (h, B) is an almost onto B-P-homomorphism of A,
then by (3.13) we have (h, B) = (j_n, W/~y), where ~, is the B-P-re-
gularizer of A induced by (h, B), and thus theorem (3.14) is proved.

Let us observe that '

(3.15) For any two B-P-reqularizers ~, and ~, of A we have:

1° (Joxy Wimn) < (Jooy Winy) if and only if ~, < ~,.

2° (fury Wimr) = (Jogy W~y) if and only if ~, = ~,.

Indeed, the mapping j_,..: W/~; — W/~, such that j_, _,(v/~,),
=0 [~, is @ homomorphism of W/~, onto W/~, if and only if ~, < ~,.

The next theorem determines the form of the free B-P-homomorphism
of A.

(3.16) Let ~q be the minimal B-P-regularizer of a quasi-algebra A.
Then the pair (jo, W|~,) is the free B-P-homomorphism of A.

Proof. By theorem (3.12) the pair (j_,, W/~,) is an almost onto
B-P-homomorphism of A. For each B-P-homomorphism (h,B) of A
we have, by theorems (3.14) and (3.15), (joy W/i~y) < (Jun, W/~s)
< (h, B); then (j_,, W/~,) is the free B-P-homomorphism of A, and
thus theorem (3.16) is proved.

By (3.9), (3.16) and (3.13) we obtain immediately

(3.17) The quasi-algebra A has a B-P-extension if and only if the
minimal B-P-reqularizer ~, of A is proper.

Let (h,, B;) and (h,, B;) be two B-P-homomorphisms of 4. By
~1, %, and ~,, i, we shall denote the B-P-regularizers and B-P-speciali-
zations of A induced by (h,, B,) and (hy, B,). Moreover, let W, = W/~,
and W, = W/~,. Then we have

(3.18) (hyy By) < (hyy By) if and only if ~, < ~, and the diagram

]~1~2

W —~ W

i | | i

B, B,
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may be completed to a commuiative diagram

Jetms

W — W2
(*) ill l (.
B, ! — B,

If (hy, B)) is almost onto, then (hy, B,) < (hy, B,) if and only if
~q { e ~g.

Proof. If h; < h,, then also k, < h,, where h, and %, are homo-
morphisms of W into B, such that h, = k,|4 and h, = h,|A. Hence
~; © ~,, because ~; and ~, are the congruences of W induced by homo-
morphisms k, and h,, and thus by theorems (3.13) and (3.15) the following
diagram is commutative:

where ¢ is a homomorphism of B, into B, such that %, = ¢&,.

If the diagram (*) is commutative, then by (3.13) diagram (=) is
also commutative, and thus (h,, B,) < (h,, B,). If (h,, B,) i8 almost
onto and if ~; = ~,, then, by (3.13) and (3.15), we have (h,, B,)
= (Jory Wl~,) < (jozy W/~,) < (hyy By). Thus theorem (3.18) is proved.

If F <@ and P is such a proper Ppg-mapping that P(f) =f for
all feF, then from theorems (3.12), (3.13), (3.14), (3.15), (3.16), (3.17)
and (3.18) we obtain Theorems 1, 2, 3, 4, 7, 8, and Theorems 5 and 6
contained in my paper [10].

F. The B-P-direct sums of quasi-algebras. Let B be an arbitrary
quasi-primitive class of quasi-algebras of the type G. Let T be any set
and let 4;,teT, be any family of quasi-algebras of the type #. Moreover,
let P be an arbitrary Ppg-mapping. Let 4 = S A, be the direct sum

teT

of quasi-algebras A;,teT (see §1, section D, and § 2, the ending of
introduction). By theorem (3.8) there exists the free B-P-homomorphism
of A. Let (h, C) be the free B-P-homomorphism of A. The quasi-algebra C
is called the B-P-direct sum of quasi-algebras Ay teT. We write

C = B-P S A;. The B-P-direct sum of quasi-algebras A;, teT, is uniquely
teT

determined up to strong isomorphisms. Now we prove the following
theorem:
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(3.19) Putting, for all teT, h; = hiy, where i, is the natural injection

of Ay into A = S Ay, we obtain a family hy, teT, of P-homomorphisms of
teT

Ay into C = B-P S A, which has the following property:
teT'

for each quasi-algebra BeB and each family of P-homomorphisms
yi, teT, of Ay into B, there exists one and only one homomorphism vy
of C into B such that yi = yhy for all teT.

Proof. By theorem (3.3), the mappings h,teT, are P-homo-
morphisms. Let A’ be the direct sum of P-homomorphisms y:, teT (see
§ 2, sec. B). Hence, by theorem (3.6), k' is the unique P-homomorphism
of A into B such that y; = h'i, for all teT'. But the pair (A', B) is an
B-P-homomorphism of A. Therefore (h, C) < (h', B), and thus there
exists exactly one homomorphism » of C into B with b’ = yh. Hence
we have y; = h'i; = yhi; = yh; for all teT', and theorem (3.19) is proved.

If & is one-to-one, then the B-P-direct sum C of quasi-algebras A,
is said to be proper (and in this case all hy, teT, are one-to-one).

Hence and from (3.9) we obtain immediately theorem

(3.20) The proper B-P-direct sum of quasi-algebras Ay, teT', ewists
if and only if the direct sum A of quasi-algebras Ay, teT, has a B-P-
extension.

The pairs <{{yiwr, B>, where BB and {y}wr is a family of the
type T of P-homomorphisms y; of quasi-algebras A; into quasi-algebra B,
are called common B-P-homomorphisms of quasi-algebras Ay, teT. If,
moreover, all y;, teT', are one-to-one, then this pair is said to be a com-
mon B-P-extension of quasi-algebras Ay, teT. Let H = ({h}pr, B'> and
H" = (W Yer, B"> be two common B-P-homomorphisms of quasi-
algebras A, teT'. We say that:

1. H' < H" if and only if there exists exactly one homomorphism ¢
of B’ into B” such that h;,’ = ¢-h; for all teT.

2. H = H"” if and only if there exists exactly one strong iso-
morphism ¢ of B’ onto B"" with b;" = q-h; for all teT.

A common B-P-homomorphism H of quasi-algebras A;, teT', is called
free if, for each common B-P-homomorphism H' of quasi-algebras A,,
teT, we have H < H'. The free common B-P-homomorphism of A;, teT,
is uniquely determined up to relation =.

(3.21) Let B be any quasi-primitive class of quasi-algebras of the type
G and let Ay, teT, be an arbitrary family of quasi-algebras of the type F.
Moreover, let P be any Ppgmapping. Then there exists the free common
B-P-homomorphism of quasi-algebras A;, teT.

Proof. Let (h, C) be the free B-P-homomorphism of the direct
sum A of quasi-algebras A;, te1, which exists by theorem (3.8). The
quasi-algebra C is the B-P-direct sum of quasi-algebras A;,teT. By
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theorem (3.19) the pair H = ({h},r, C), where h, = h-i,, is the free
common B-P-homomorphism of quasi-algebras A, te7, and thus
theorem (3.21) is proved. From (3.20) results

(3.22) The proper B-P-direct sum of quasi-algebras A,,teT, exists
if and only if there ewists a common B-P-extension of A, teT.

Theorem (3.22) may be considered as a generalization of Theorem
VIII in Sikorski’s paper [8].

G. B-P-bilinears and B-P-tensor products of quasi-algebras. Let
A=<{A,(fa,feF)y and B = (B, (fy,feF)> be two quasi-algebras
of the type F and let C = (C, (gy, geG))> be any quasi-algebra of the
type G. Moreover, let P be an arbitrary Ppg-mapping. A mapping ¢
of cartesian product 4 x B into C is called a P-bilinear of A and B into C
if, for all feF, all elements (a:, & < n(f)) belonging to the domain of f,,
all elements (bs, & < n(f)) belonging to the domain of fg, all aed, all
beB, and for all 7eP(f), we have:

(<falas, < n(f), b)) = tolp(<as, b)), & < n(f),
° p(<as flbey E<n(N)) = telp(<a, b)), &< n(f).

If the left-hand sides of 1° and 2° exist, then the right-hand sides
of 1° and 2° exist according to definition of a P-bilinear. Let B be any
class of quasi-algebras of the type G. Any pair (¢, C), where €3 and
@ is a P-bilinear of 4 and B into C is said to be an B-P-bilinear of A and
B. Let D be the quasi-tensor product of quasi-algebras 4 and B (see
§ 1, sec. D, and § 2, the ending of introduction). If (¢, C) is a B-P-bi-
linear of 4 and B, then (¢, C) is a B-P-homomorphism of D. But the
converse is not always true and we have only the following theorem:

(3.23) A B-P-homomorphism (¢, C) of the quasi-tensor product D
of quasi-algebras A and B is a B-P- b?lmear of A and B if and only if, for
all feF all TeP(f), all aeA, and all beB, we have

‘f’(<fA Ayy.uny), b)) = TC(‘P(<G'7 by), ¢(<a, b)), )7
2! 9’(<a,fﬂ(b7 b, )>) = TC((}”(<“: b>), ¢ (<a, by, )’
provided the left-hand sides of 1’ and 2’ exist.
The B-P-bilinears of 4 and B are the B-P-homomorphisms of the
quasi-tensor product D of A and B, which fulfill the relations 1’ and 2.

A B-P-bilinear (¢, C) of A and B such that for every B-P-bilinear
(¢', €') of A and B we have (¢, C) < (¢, C’) is called free (%)
If (p, €) is the free B-P-bilinear of 4 and B, then the quasi-algebra C
is said to be the B-P-tensor product of A and B. The free B-P-bilinear
(%) The relation (p, C) < (p, C’) between two B-P-bilinears of 4 and B is

understood as the relation < between the B-P-homomorphisms of the quasi-tensor
product of A and B.
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and the B-P-tensor product of A and B (if they exist) are uniquely de-
termined up to relation = and strong isomorphisms, respectively. Let
us observe that

(3.24) The direct product of P-bilinears of A and B is also a P-bi-
linear of A and B. Let i, teT, be any P-bilinear of A and B into C,. Then
the direct product of ¢i,teT, i.e. the mapping ¢: AX B — C, where

¢ = P ¢, is the direct product of Cy such that for all aeA, beB and all
teT

teT we have p({a, bY)(t) = qi(<a, b)), is the unique P-bilinear of A and B

into C = P €, with ¢; = pyp for all teT, where p;is the natural projection
te

of C onto (.
Now we prove an existence theorem:

(3.25) Let B .be an arbitrary quasi-primitive class of quasi-algebras
of the type G and let A and B be any quasi-algebras of the type F. Moreover,
let P be an arbitrary Py g-mapping. Then there exist the free B-P-bilinear
of A and B and the B-P-tensor product of A and B.

Proof. By theorem (2.3) there exists a cardinal number m such
that |C| < m for every quasi-algebra C of type G generated by a set
M with |M| < |Ax B|. Let E be any set with |E| > m. Let C be any
quasi-algebra of the type G with ¢ = E, where (' is.the set of C. We denote
by P-H(A, B, C) the set of all P-bilinears of 4 and B into C. Let ¢g
be the direct product of all P-bilinears ieP-H(A, B, C). By (3.24),
¢ is the unique P-bilinear of 4 and B into C”#4-B© such that 1 = pige
for all AeP-H(A, B, C), where p, are the mnatural projections.
Now let ¢ be the direct product of all P-bilinears ¢, where CeB and
C < E. The mapping ¢ is the unique P-bilinear of 4 and B into
R = PCPHABO - where CeB and € < B, with ¢ep = ¢¢ for all
C B with € c B, where ¢, are the natural projections. Let us denote

by U = ¢(4x B) the subquasi-algebra of R generated by the image
of ¢. Then the pair (¢, U) is the free B-P-bilinear of 4 and B, and U is
the B-P-tensor product of A and B. Indeed, since B is quasi-primitive,
U<B and thus (¢, U) is an B-P-bilinear of A and B. Now let (y, V)

be any B-P-bilinear of A and B. Let us denote by V, = y(AXx B) the
subquasi-algebra of V generated by the image of . Obviously |V,
< m, because |p(Ax B)| < |Ax B|. Hence it follows that there exists
a quasi-algebra CeB with € < E strongly isomorphic to V,. Let i be
the strong isomorphism of € onto V,. Then we have y = ¢p, where
g =1ip,0c| U with 2 =i 'y, and thus (¢, U) < (y, V). Therefore we
have proved that the pair (¢, U) is the free B-P-bilinear of 4 and B, and
thus also that U is the B-P-tensor product of 4 and B. Theorem (3.25)
is proved.

~ Let us assume that B is an arbitrary primitive class of algebras
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of the type G. Let A = (A, (f4,f<F)> and B = (B, (fg,f<F)> be any
two quasi-algebras of the type F. Moreover, let P be an arbitrary Ppg-
mapping. In this special case the free B-P-bilinear and the B-P-tensor
product of 4 and B may be obtained by the use of the algebra W = Free
(B, Ax B), B-free freely generated by the set Ax B. Indeed, let ~,
be the least congruence ~ of the algebra W such that for all feF, all
TeP(f), all sequences (ac, & < n(f))ed"?, (b, &< n(f)) B, all aed,
and all beB we have:

1. <fA(a57 g% n(f))y b>NTW(<afy by, &< n(f))’

2. a, fglbey &< n(f)> ~ 1 (<a, bsy, &< n(f))

provided the left-hand sides exist. Now let us denote by W [~, the quotient
algebra formed by dividing W by the congruence ~,, and by @, the
natural mapping such that ¢,(<a, b)) = <a, b)[~, for all aed and all
beB. Then the following theorem may be proved:

(3.26) The pair (¢,, W|~,) is the free B-P-bilinear of A and B and
the algebra W~ is the B-P-tensor product of A and B.

Proof. From the definition easily follows that the pair (g,, W/~,)
is a B-P-bilinear of 4 and B. Now let (y, C) be an arbitrary B-P-bilinear
of A and B. Let us denote by h a homomorphism of the algebra W
into C such that h(<a, b)) = yp(<a, b>) for all (a,b)edx B, i.e. h is
an extension of y. The congruence ~; of W induced by & fulfils the
relations 1 and 2, i. e. ~, = ~,. Hence it results that the mapping ¢ :
W[~y — C such that q(v/~,) = h(v) for ve W is a homomorphism of
W/~ into € with p = gg,, and thus (@, W/~,) < (p, C). Therefore
(po) W/~,) is the free B-P-bilinear of A and B and W/~, is the B-P-
tensor product of 4 and B. Thus theorem (3.26) is proved.

H. P-independence in algebras. Now let us consider the notion of
independence with respect to P-homomorphisms, i. e. P-independence.

Let A and B be any quasi-algebras of the type F and @, respectively,
and let P be an arbitrary Ppg-mapping. A subset M < A is said to be
B-P-independent (or B-P-free) if each mapping of M into B can be ex-
tended to a P-homomorphism of the subquasi-algebra M of A generated
by M into B. Now we prove the following theorems.

(3.27) The class P-ind*M of all quasi-algebras B of the type G such
that M is B-P-independent and the class P-ind M of all algebras B of the
type G for which M is B-P-independent are primitive (i. e. quasi primitive
closed with respect to homomorphic images) for any quasi-algebra A of the
type F and any subset M of A.

Proof. Let BeP-ind*M (resp. BeP-ind M). Then obviously we have
B,eP-ind*M (resp. B,eP-ind M) for any subquasi-algebra B, of B.
Let h be a homomorphism of B onto € and let ¢ be any mapping of M
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into €. Then there exists a mapping v of M into B such that ¢ = hy. Let

h, be the P-homomorphism of I into B being an extension of y. De-

fining h, = h-h, we obtain, by (3.2), a P-homomorphism of M into C

being an extension of ¢, and thus CeP-ind*M (resp. CeP-ind M).

Let T be any set and let ByeP-ind*M (resp. By;eP-indM) for teT.

Let us consider the quasi-algebra (resp. algebra) B :tP B; being the
T

direct product of B;,{eT. Let ¢ be any mapping of M into B. Let us
denote by ¢, teT, the mapping of M into B, being the projection of ¢,
i.e. ¢ = pyp. Let by, teT, be the P-homomorphism of M into B; being
an extension of ¢, and let h be the direct product of P-homomorphisms
hi, teT. By theorem (3.4), h is a P-homomorphism of M into B, and,
obviously, k is an extension of p. Therefore BeP-ind*M (resp. B e P-ind M
and theorem (3.27) is proved.

(3.28) A subset M of a quasi-algebra A of the type I' is B-P-indepen-
dent, where B is any quasi-algebra of the type G and P is any proper Pg -
mapping, if and only if M is P(B)-independent (i. e. independent with
respect to ordinary homomorphisms in a quasi-algebra P(B) similar to A),
where P(B) is the P-quasi-algebra over B.

Proof. This follows from (3.1).

(3.29) If M is an absolutely free of the type F subset of an algebra A
of the type F (i. e. M is D-independent for all algebra D of the type F'), then
M is B-P-independent for each algebra B of the type G and each proper
Py g-mapping P.

Proof. This results immediately from (3.28).

In the sequel we shall consider the P-independence with respect
to a proper Ppomapping and for algebras only. Let us assume that P
is an arbitrary proper Ppg-mapping. By (3.29) the identity mapping
x — x for xe X can be extended to the unique P-homomorphism hp of the
absolutely free algebra F* = Free(F, X) of the type F freely generated
by X (i. e. F* is the Peano-algebra of the type F' generated by X; see
§ 2, sec. C) into the absolutely free algebra G* = Free(G#, X) of the type
@ freely generated by X (G™ is the Peano-algebra of the type G genérated
by X). The elements of F* and G* will be considered as F-terms and G-
terms respectively. The elements of X will be considered as variables.
In the following theorems (3.31), (3.32) and (3.33) we shall assume that
|X| > o, where p is the rank of F. For all F-terms 7eF* we put P(7)
= hp(7). Moreover, according to (2.11), for every F-term <, 7' will
denote the F-term obtained from = by the substitution w; by
for & < m(t), where (mﬁe, §< %(T)) is the support of 7. Let us observe
that P(7') = P(7'). '

(3.30) Let h be any P-homomorphism of an algebra D of the type F
into an algebra B of the type G. Then for all v<F* we have:
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1° hirp(me, E< k) = P(r)g(h(me), E< k) for k=n(r) and all
sequences (mg, £ < k)eD¥,

2° h(p7(p)) = gP(z)(h(g) for all peD*.

Proof. By (3.1) h is an ordinary homomorphism of D into P(B),
where P(B) is a P-algebra over B. From the definition of a P-algebra it
follows that 7py = P(r)p for all F-terms teF*. Hence, using (2.10),
we obtain h(rp(mg, & < k) = pp (h(me), £ < k) = P(1)y (h(me), &< k).
Similarly, we can obtain the relation 2° and thus (3.30) is proved.

The next theorem gives the necessary and sufficient conditions
for the B-P-independence of a subset M of A.

(3.31) A subset M of an algebra A of the type F is B-P-independent,
where B is any algebra of the type G, if and only if for all F-terms v, O F*
and every mapping ¢ : X — M such that ¢ is one-to-one on the set X, w X,,
where X, and X, are the supports of terms t and 9, the equality ,7(p) = 49 ()
implies the validity of the G-equation” P(t) = P(#) "in the algebra B (i. e.
P (1) = pP(9)).

(3.32) A subset M of an algebra A of the type F is B-P-independent,
where B is any algebra of the type G, if and only if for all F-terms v, & F*
and all different elements mge M, &<k, where k = n(9) = n(r), the
equality T (me, E<< k) = 0 ,4(me, E< k) implies the wvalidity of the G-
equation "P(7') = P(#') 1 in the algebra B (resp. P(t'), == P Vgh

(3.33) A subset M = (mgy Myy .oy Mgy ...y E<< k), where m; are different
elements of an algebra A of the type F, is B-P-independent, where B is any al-
gebra of the type G, if and only if for all F-terms v, ¢ e F* with n(r) < n(d) <k
the equality v4(me, &< k) = O ,4(me, << k) implies the validity of the G-
equation " P (') = P(9') " in the algebra B (resp. P(v')g = P(9')p)-

Proof of theorems (3.31)-(3.33). Let us assume that M is B-P-
independent. ‘

The necessity of (3.31). Let ,7(p) = 49(¢). Hence, by the definition,
®(7) = @(9), where ¢ is the homomorphism of F* = Free(F, X) into 4
which is an extension of ¢. Let p: X — B be any mapping and let v,
be a mapping such that the following diagram is commutative:

P

X—\———>M
(1) N S Yo -
B
Hence it follows that the next diagram is commutative:
NN
(2) @ l l Y
A —B
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where p and y, are the homomorphism of G* into B and the P-homo-
morphism of A into B being extensions of » and y,, respectively. Using
the diagram (2) and the equality ¢(7) = ¢(9) we have

5P () () = »(P(0)) = v(hp(7)) = po#(v) = pop(9) = p(hp (D))
= p(P(9)) = pP (&) (y),

and, therefore LP(7r) = pP(?), i.e. the G-equation "P(r) = P(9) ' is
valid in the algebra B. For the existence of the commutative diagram
(1) we always replace p by a mapping w, as follows.

Let w: X — B be any mapping and let y,: M — B be a mapping
such that y,p(x) = y(z) for all ze X, v X,. If we define v, = y,p, then
¥, (x) = (o) for all zeX, v X, and the diagram

.P‘* hP G*
(3) @ J'( l ¥
A——B
Yo

is commutative, where u, and , are the homomorphism of G* into B
and the P-homomorphism of A4 into B being extensions of p, and %,
respectively. The mappings y and w, coincide on supports of z and ¥,
then pP(7)(y) = gP(7)(y:) and pP(9)(y) = pP(d)(y,). Using the
diagram (3) and the equality ¢(r) = @(&#) we have

sl (7)(p) = P (7)(y1) = v (P(1)) = 91 (hp(7)) = wop(7) = 90 (D)
= p1(hp(9)) = 1 (P(9) = pP(9)(y1) = gP(9)(p)

and therefore P () = P (9), i. e. the G-equation " P(r) = P(9) is valid
in the algebra B.

The necessity of (3.32) and (3.33). Let the equality 7z 4(me, &£ < k)
=D4(me, E< k) hold. Then by (2.12) we have 14(me, &< k)
= 94 (mg, £ < k), i. e. (by the definition of 7/, and #,; see § 2, sec. D)
¢(7') = ¢(?’), where ¢ is a mapping of X into M such that ¢(z;) = m;
for & << m(9"), and ¢ is the homomorphism of F* into 4 which is an exten-
sion of . Let y: X — B be any mapping and let vy,, w, be the same as
before. Then we have pP(7')(y) = gP(7')(y,) and zP (') (y) = gP (&) (w,).
Using the diagram (3) and the equality ¢(7’) = ¢(#') we have

P (T)(y) = pP (') (p)) = v (P () = w:(hp(7") = o (¥') = 9o (&)
= 91 (hp(9)) = 9, (P(9')) = gP(¢')(v1) = gP(9")(v) 7
and therefore RP(7') = pP(¥'), i e. the G-equation "P(z') = P(9')"}
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is valid in B and, by (2.15), P(7')g = P(¥')g, since P(7') = P(r’) and
P(d') = P(#'). The necessity of (3.31)-(3.33) is proved.

Proof of sufficiency. Let us assume that the set M has the property
given in either (3.31) or (3.32) or (3.33), and let » : X — B be any mapping
of M into B. Moreover, let y be the homomorphism of the absolutely
free algebra M* = Free(F, M) of the type F freely generated by M
onto the subalgebra M of A generated by M such that y(m) = m for
me M. The mapping y can be extended, by theorem (3.29), to the P-
homomorphism h, of M* into B. Let us observe that

(u) if y(w) = g(w’), then hw(’w) = hw(w,)-

Indeed, let w = 7y (me, £< k) and let w’ = Oyp(me, & <k) (see(2.12)),
where y(w) = y(w’). Hence, by (2.10), 74(mg, &< k) = O4(me, & < k)
and thus 47’ (p) = #4(p), where ¢ is a mapping of X into M such that
¢(xe) = m; for &< max(n(z’),n(d)). Therefore, by the assumption
and by (2.15), we have P(7')g = P(¥)g (since P(z') = P(r’) and
P(9) = P(9), and thus, by (3.30) for D = M*, we obtain

h,(w) = hw(TJ’u‘ (me, E< k) = P(T')B(hw(mf)’ §< k) :P(ﬁl)B(hw(mE’ E< k)
= h, (0;"*(7"’57 E< k)) = h,(w’).

Lemma (u) is proved.

From (u) it follows that the mapping h: M — B such that for
ae M, h(a) = h,(w), where a = y(w), may be considered as a function.
Obviously, & is a P-homomorphism of M into B being an extension of ,
and thus M is B-P-independent. The sufficiency of (3.31)-(3.33) is also
proved. This completes the proof of theorems (3.31)-(3.33).

As it follows from my paper [9], it is sufficient for a study of algebras
of type F by the use of the notion of validity to use a set X of variables
of cardinal number p, where p is the rank of F. The support X, of any
F-term 7 fulfils the relation |X,| < y, where y is the dimension of F.
Hence, from (3.31)-(3.33), and from § 2, sec. D, we obtain

(3.34) P-ind M = M P-ind M’ for any algebra A of the

M'CM,|M'|\<y
type F' and any subset M of A.

Let us consider two equationally definable classes 2 and B of algebras
of the type I' and G, respectively. From (3.31) immediately results

(3.35) An U-free set is B-P-independent (or B-P-free), i.e. B-P-
independent for all BeB, if and only if for all F-terms v,deF* the
validity of the F-equation "t = ¥ in the class 2 (i. e. in all algebras
belonging to A) implies the validity of the G-equation " P(t) = P(9) ' in
the class B.

Since the G-equation P (z) = P(#) 'is valid in an algebra B of the
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type G if and only if the F-equation "z = ¢! is valid in P(B), where
P(B) is P-algebra over B, we obtain from (3.35)

(3.36) An U-free set is B-P-independent if and only if P(B)eA for
all BeB, where P(B) is the P-algebra over B.

The mapping P is said to be (U, B)-universal it every AU-free set is
a B-P-free set. By (3.36) we have

(3.37) The mapping P is (AU, B)-universal if and only if P(B)e
for all BeB, where P(B) is a P-algebra over B.

Let us denote by B(P, ) the class of all algebras BB such that
the G-equation " P(7) = P(#) 'is valid in B provided the F- -equation
Tz = ¢ lis valid in the class 2. By B(2) will be denoted the intersection

of all classes B(P,2A), where P is a proper Ppg-mapping, i. e. B(A)
= N BP, ).

(3.38) For every pair (U, B) and every proper Ppg-mapping P there
exists the maximal subclass Bp < B such that P is (A, Bp)-universal.

Proof. By (3.35), the class Bp = B (P, A) fulfils the thesis of (3.38).

The pair (2, B) is said to be universal if every proper Py g-mapping
P is (A, B)-universal.

(3.39) For every pair (U, B) there exists the maximal subclass B, = B
such that the pair (A, B,) is universal.

Proof. The class B, = B(A) fulfils the thesis of (3.39).

A subset M of an algebra A of the type F is called strongly B-in-
dependent, where B is any algebra of the type @, if the set M is B-P-
independent for any proper Ppg-mapping P. The subset M is said to
be strongly B-independent (or strongly B-free), where B is a class of al-
gebras of the type @, if it is strongly B-independent for all Be3. It is
easy to verify that

(3.40) A pair (A, B) is universal if and only if any AU-free set is
a strongly B-free set.

Let us assume that F = G.

(3.41) For every class 2 of algebras of the type F there exists the
maximal subclass A, = A such that the pair (U,, A,) is universal.

Proof. The class 2, =2A(Y) fulfils the thesis of (3.41), since
Ay (Ay) = Uy, The equality 2, = Ay (U,) is true, because the super-
position @ of two proper Pp z-mappings is also a proper Py p- mapping.

The classes 20 such that the pairs (2, 2[) are universal are called
universal. The strongly 2-free sets are, obviously, 2-free sets, but the
converse is true if and only if 2 is universal. A subset M of an algebra A4
of the type F is said to be strongly independent in A provided it is strongly
A-independent. A strongly independent set of generators for A is called
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a strong basis of A. Let P be any proper Ppp-mapping. If P is (U, )
universal, then P is called briefly A-universal. The mapping P is said
to be absolutely universal if P is U-universal for every equationally de-
finable class 2 of algebras of the type F. Obviously, the natural proper
Py p-mapping P such that P(f) = f for all feF, is absolutely universal.
By a result of Fujiwara [3], if P is absolutely universal, then P-homo-
morphisms are ordinary homomorphisms, i. e. P is the natural Pp p-
mapping, provided F is a set of finitary operator symbols only containing
at least one non-unary operator symbol. For a set ¥ containing infinitary
operator symbols, this problem is open. (P 521)

Finally we remark that the considerations of this paper may be ge-
neralized in large part on arbitrary systems of P-mappings between
quasi-algebras. For this generalization see my paper [11].
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